Interpretability constraints for fuzzy information granulation

Information granules are complex entities that arise in the process of abstraction of data and derivation of knowledge. The automatic generation of information granules from data is an important task, since it gives to machines the ability of acquiring knowledge that can be communicated to users. For this purpose, knowledge acquisition should provide for fuzzy information granules that can be naturally labelled by linguistic terms, i.e. symbols that belong to the natural language. Information granules of this type are called interpretable. However, interpretability cannot be guaranteed until a set of constraints is imposed on the granulation process. In literature, several interpretability constraints have been proposed, but, due to the subjective interpretation of interpretability, there is no agreement on which constraints should be adopted. This survey is an attempt to provide for a complete presentation of interpretability constraints adopted in literature with the following objectives: (i) to give a homogeneous description of all interpretability constraints; (ii) to provide for a critical review of such constraints; (iii) to identify potentially different meanings of interpretability. Hopefully, this survey may serve as a guidance for designing interpretable fuzzy models as well as for identifying new methods of interpretable information granulation.

[1]  Qiang Shen,et al.  From approximative to descriptive fuzzy classifiers , 2002, IEEE Trans. Fuzzy Syst..

[2]  James M. Keller,et al.  Analysis and efficient implementation of a linguistic fuzzy c-means , 2002, IEEE Trans. Fuzzy Syst..

[3]  Brigitte Charnomordic,et al.  Generating an interpretable family of fuzzy partitions from data , 2004, IEEE Transactions on Fuzzy Systems.

[4]  Witold Pedrycz,et al.  Quantification of fuzzy mappings: a relevance of rule-based architectures , 1999, 18th International Conference of the North American Fuzzy Information Processing Society - NAFIPS (Cat. No.99TH8397).

[5]  Mo-Yuen Chow,et al.  Heuristic constraints enforcement for training of and knowledge extraction from a fuzzy/neural architecture. I. Foundation , 1999, IEEE Trans. Fuzzy Syst..

[6]  Francisco Herrera,et al.  A learning process for fuzzy control rules using genetic algorithms , 1998, Fuzzy Sets Syst..

[7]  James M. Keller,et al.  A possibilistic approach to clustering , 1993, IEEE Trans. Fuzzy Syst..

[8]  Giovanna Castellano,et al.  Deriving prediction intervals for neurofuzzy networks , 2003 .

[9]  Edward T. Lee,et al.  Fuzzy Neural Networks , 1975 .

[10]  V. Novák,et al.  Discovering the world with fuzzy logic , 2000 .

[11]  Janusz Kacprzyk,et al.  Computing with Words in Information/Intelligent Systems 1 , 1999 .

[12]  Anil K. Jain,et al.  Statistical Pattern Recognition: A Review , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Yeung Yam,et al.  Trade-off between approximation accuracy and complexity: TS controller design via HOSVD based complexity minimization , 2003 .

[14]  Marwan Bikdash,et al.  A highly interpretable form of Sugeno inference systems , 1999, IEEE Trans. Fuzzy Syst..

[15]  Magne Setnes Simplification and reduction of fuzzy rules , 2003 .

[16]  Bernhard Sendhoff,et al.  Extracting Interpretable Fuzzy Rules from RBF Networks , 2003, Neural Processing Letters.

[17]  Fuzzy Logic in Control Systems : Fuzzy Logic , 2022 .

[18]  J. Casillas Interpretability issues in fuzzy modeling , 2003 .

[19]  Lars Niklasson,et al.  Accuracy vs. comprehensibility in data mining models , 2004 .

[20]  Pierre Yves Glorennec,et al.  Adaptive Fuzzy Control , 1993 .

[21]  Mohan Tanniru,et al.  A Petri-Net Based Approach for Verifying the Integrity of Production Systems , 1992, Int. J. Man Mach. Stud..

[22]  J. Valente de Oliveira On the optimization of fuzzy systems using bio-inspired strategies , 1998 .

[23]  Derek A. Linkens,et al.  Input selection and partition validation for fuzzy modelling using neural network , 1999, Fuzzy Sets Syst..

[24]  Bernhard Sendhoff,et al.  On generating FC3 fuzzy rule systems from data using evolution strategies , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[25]  Mo-Yuen Chow,et al.  Heuristic constraints enforcement for training of and rule extraction from a fuzzy/neural architecture. II. Implementation and application , 1999, IEEE Trans. Fuzzy Syst..

[26]  Robert Babuška,et al.  A multi-objective evolutionary algorithm for fuzzy modeling , 2001, Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference (Cat. No. 01TH8569).

[27]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[28]  Christoph S. Herrmann,et al.  Symbolical Reasoning about Numerical Data: A Hybrid Approach , 1997, Applied Intelligence.

[29]  Witold Pedrycz,et al.  Conditional Fuzzy C-Means , 1996, Pattern Recognit. Lett..

[30]  Frank Klawonn,et al.  Obtaining interpretable fuzzy models from fuzzy clustering and fuzzy regression , 2000, KES'2000. Fourth International Conference on Knowledge-Based Intelligent Engineering Systems and Allied Technologies. Proceedings (Cat. No.00TH8516).

[31]  L. Zadeh Fuzzy sets as a basis for a theory of possibility , 1999 .

[32]  Lotfi A. Zadeh,et al.  Toward a logic of perceptions based on fuzzy logic , 2000 .

[33]  Witold Pedrycz,et al.  An Introduction to Fuzzy Sets , 1998 .

[34]  W. Pedrycz,et al.  An introduction to fuzzy sets : analysis and design , 1998 .

[35]  Cezary Z. Janikow,et al.  Fuzzy decision trees: issues and methods , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[36]  Madan M. Gupta,et al.  Introduction to Fuzzy Arithmetic , 1991 .

[37]  Shigeo Abe,et al.  Neural Networks and Fuzzy Systems , 1996, Springer US.

[38]  Lotfi A. Zadeh,et al.  The Concepts of a Linguistic Variable and its Application to Approximate Reasoning , 1975 .

[39]  Jacek M. Zurada,et al.  Data-driven design of fuzzy system with relational input partition , 2001, 10th IEEE International Conference on Fuzzy Systems. (Cat. No.01CH37297).

[40]  T. Warren Liao,et al.  II, A fuzzy c-means variant for the generation of fuzzy term sets , 2003, Fuzzy Sets Syst..

[41]  Ahmad Lotfi,et al.  Interpretation preservation of adaptive fuzzy inference systems , 1996, Int. J. Approx. Reason..

[42]  Andrzej Bargiela,et al.  Granular clustering: a granular signature of data , 2002, IEEE Trans. Syst. Man Cybern. Part B.

[43]  Robert Babuška Data-Driven Fuzzy Modeling : Transparency and Complexity Issues , 1999 .

[44]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[45]  Victor Chepoi,et al.  Fuzzy clustering with structural constraints , 1999, Fuzzy Sets Syst..

[46]  W. Pedrycz,et al.  Granular correlation analysis in data mining , 1999, 18th International Conference of the North American Fuzzy Information Processing Society - NAFIPS (Cat. No.99TH8397).

[47]  Witold Pedrycz,et al.  Fuzzy control and fuzzy systems , 1989 .

[48]  H. Berenji,et al.  Clustering in product space for fuzzy inference , 1993, [Proceedings 1993] Second IEEE International Conference on Fuzzy Systems.

[49]  Jyh-Shing Roger Jang,et al.  ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..

[50]  Maciej Wygralak An axiomatic approach to scalar cardinalities of fuzzy sets , 2000, Fuzzy Sets Syst..

[51]  Hisao Ishibuchi,et al.  Fuzzy Rule Selection By Data Mining Criteria And Genetic Algorithms , 2002, GECCO.

[52]  T. Warren Liao,et al.  A fuzzy c‐medians variant for the generation of fuzzy term sets , 2002, Int. J. Intell. Syst..

[53]  Serge Guillaume,et al.  Designing fuzzy inference systems from data: An interpretability-oriented review , 2001, IEEE Trans. Fuzzy Syst..

[54]  Hisao Ishibuchi,et al.  Single-objective and two-objective genetic algorithms for selecting linguistic rules for pattern classification problems , 1997, Fuzzy Sets Syst..

[55]  D. Tikk,et al.  Exact trade-off between approximation accuracy and interpretability: solving the saturation problem for certain FRBSs , 2003 .

[56]  F. Herrera,et al.  Accuracy Improvements in Linguistic Fuzzy Modeling , 2003 .

[57]  Henk B. Verbruggen,et al.  FUZZY MODELING AND CONTROL IN AVIONICS , 1999 .

[58]  Magne Setnes,et al.  Rule-based modeling: precision and transparency , 1998, IEEE Trans. Syst. Man Cybern. Part C.

[59]  Vladimir Vapnik,et al.  An overview of statistical learning theory , 1999, IEEE Trans. Neural Networks.

[60]  Lotfi A. Zadeh,et al.  Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic , 1997, Fuzzy Sets Syst..

[61]  L. Wang,et al.  Fuzzy systems are universal approximators , 1992, [1992 Proceedings] IEEE International Conference on Fuzzy Systems.

[62]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[63]  Thomas Sudkamp,et al.  Effect of Rule Representation in Rule Base Reduction , 2003 .

[64]  Elie Bienenstock,et al.  Neural Networks and the Bias/Variance Dilemma , 1992, Neural Computation.

[65]  M. Setnes,et al.  Transparent fuzzy modeling using fuzzy clustering and GAs , 1999, 18th International Conference of the North American Fuzzy Information Processing Society - NAFIPS (Cat. No.99TH8397).

[66]  Ming Li,et al.  Applying MDL to Learning Best Model Granularity , 2000, ArXiv.

[67]  Yaochu Jin,et al.  Fuzzy modeling of high-dimensional systems: complexity reduction and interpretability improvement , 2000, IEEE Trans. Fuzzy Syst..

[68]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[69]  Magne Setnes,et al.  Compact and transparent fuzzy models and classifiers through iterative complexity reduction , 2001, IEEE Trans. Fuzzy Syst..

[70]  J. Rissanen,et al.  Modeling By Shortest Data Description* , 1978, Autom..

[71]  Enrique H. Ruspini,et al.  A New Approach to Clustering , 1969, Inf. Control..

[72]  Giovanna Castellano,et al.  A neuro-fuzzy network to generate human-understandable knowledge from data , 2002, Cognitive Systems Research.

[73]  J. Ackermann,et al.  Analysis and Design , 1993 .

[74]  Fernando Gomide,et al.  A high level net approach for discovering potential inconsistencies in fuzzy knowledge bases , 1994 .

[75]  Jiang-She Zhang,et al.  Improved possibilistic C-means clustering algorithms , 2004, IEEE Trans. Fuzzy Syst..

[76]  Karl Rihaczek,et al.  1. WHAT IS DATA MINING? , 2019, Data Mining for the Social Sciences.

[77]  Yaochu Jin,et al.  An approach to rule-based knowledge extraction , 1998, 1998 IEEE International Conference on Fuzzy Systems Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36228).

[78]  Andrea Bonarini,et al.  Anytime Learning and Adaptation of Structured Fuzzy Behaviors , 1997, Adapt. Behav..

[79]  Rudolf Kruse,et al.  A neuro-fuzzy approach to obtain interpretable fuzzy systems for function approximation , 1998, 1998 IEEE International Conference on Fuzzy Systems Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36228).

[80]  John Yen,et al.  Improving the interpretability of TSK fuzzy models by combining global learning and local learning , 1998, IEEE Trans. Fuzzy Syst..

[81]  Noureddine Zahid,et al.  Fuzzy clustering based on K-nearest-neighbours rule , 2001, Fuzzy Sets Syst..

[82]  Lotfi A. Zadeh,et al.  Soft computing and fuzzy logic , 1994, IEEE Software.

[83]  Witold Pedrycz,et al.  Granular Computing - The Emerging Paradigm , 2007 .

[84]  Witold Pedrycz,et al.  Collaborative fuzzy clustering , 2002, Pattern Recognit. Lett..

[85]  Manoranjan Dash,et al.  Entropy-based fuzzy clustering and fuzzy modeling , 2000, Fuzzy Sets Syst..

[86]  A. Kandel,et al.  Comment on "Combinatorial Rule Explosion Eliminated by a Fuzzy Rule Configuration" , 1999 .

[87]  Jerome H. Friedman,et al.  An Overview of Predictive Learning and Function Approximation , 1994 .

[88]  Frank Klawonn,et al.  Foundations of fuzzy systems , 1994 .

[89]  Jung-Hsien Chiang,et al.  A new fuzzy cover approach to clustering , 2004, IEEE Trans. Fuzzy Syst..

[90]  Héctor Pomares,et al.  Self-organized fuzzy system generation from training examples , 2000, IEEE Trans. Fuzzy Syst..

[91]  Rudolf Kruse,et al.  Generating classification rules with the neuro-fuzzy system NEFCLASS , 1996, Proceedings of North American Fuzzy Information Processing.

[92]  Vijay K. Rohatgi,et al.  Advances in Fuzzy Set Theory and Applications , 1980 .

[93]  Jacek M. Leski,et al.  Fuzzy and Neuro-Fuzzy Intelligent Systems , 2000, Studies in Fuzziness and Soft Computing.

[94]  Palma Blonda,et al.  A survey of fuzzy clustering algorithms for pattern recognition. II , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[95]  Giovanna Castellano,et al.  Fuzzy Information Granules: a Compact, Transparent and Efficient Representation , 2003, J. Adv. Comput. Intell. Intell. Informatics.

[96]  Giovanna Castellano,et al.  Automatic fuzzy encoding of complex objects , 2001, Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference (Cat. No. 01TH8569).

[97]  Lotfi A. Zadeh,et al.  Fuzzy sets and information granularity , 1996 .

[98]  Petri Vuorimaa,et al.  Fuzzy self-organizing map , 1994 .

[99]  Giovanna Castellano,et al.  Deriving prediction intervals for neuro-fuzzy networks , 2005, Math. Comput. Model..

[100]  Giovanna Castellano,et al.  On the Role of Interpretability in Fuzzy Data Mining , 2007, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[101]  Ronald R. Yager,et al.  On discovering potential inconsistencies in validating uncertain knowledge bases by reflecting on the input , 1991, IEEE Trans. Syst. Man Cybern..

[102]  José Valente de Oliveira,et al.  Semantic constraints for membership function optimization , 1999, IEEE Trans. Syst. Man Cybern. Part A.

[103]  Jerry M. Mendel,et al.  Comments on "William E. Combs: Combinatorial rule explosion eliminated by a fuzzy rule configuration" [and reply] , 1999, IEEE Trans. Fuzzy Syst..

[104]  Daniele Mundici If-Then-Else and Rule Extraction from Two Sets of Rules , 2002 .

[105]  Rudolf Kruse,et al.  Choosing Appropriate Neuro-Fuzzy Models , 1994 .

[106]  James E. Andrews,et al.  Combinatorial rule explosion eliminated by a fuzzy rule configuration , 1998, IEEE Trans. Fuzzy Syst..

[107]  Beatrice Lazzerini,et al.  Some considerations on input and output partitions to produce meaningful conclusions in fuzzy inference , 2000, Fuzzy Sets Syst..

[108]  Harry Wechsler,et al.  From Statistics to Neural Networks: Theory and Pattern Recognition Applications , 1996 .

[109]  Hidetomo Ichihashi,et al.  Neuro-fuzzy ID3: a method of inducing fuzzy decision trees with linear programming for maximizing entropy and an algebraic method for incremental learning , 1996, Fuzzy Sets Syst..

[110]  Francisco Herrera,et al.  GENERATING FUZZY RULES FROM EXAMPLES USING GENETIC ALGORITHMS , 1995 .

[111]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[112]  Maria Petrou,et al.  On the relationship between neural networks and fuzzy reasoning , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[113]  Hisao Ishibuchi,et al.  Selecting fuzzy if-then rules for classification problems using genetic algorithms , 1995, IEEE Trans. Fuzzy Syst..

[114]  E. M. Wright,et al.  Adaptive Control Processes: A Guided Tour , 1961, The Mathematical Gazette.

[115]  Bart Kosko,et al.  Optimal fuzzy rules cover extrema , 1995, Int. J. Intell. Syst..

[116]  Bart Kosko,et al.  Fuzzy Cognitive Maps , 1986, Int. J. Man Mach. Stud..

[117]  Ferenc Szeifert,et al.  Interpretable Semi-Mechanistic Fuzzy Models by Clustering, OLS and FIS Model Reduction , 2003 .

[118]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1992, Artificial Intelligence.

[119]  Oliver Nelles,et al.  Adaptive fuzzy model-based control , 1998 .

[120]  Peter J. Fleming,et al.  An Overview of Evolutionary Algorithms in Multiobjective Optimization , 1995, Evolutionary Computation.

[121]  Brigitte Charnomordic,et al.  A new method for inducing a set of interpretable fuzzy partitions and fuzzy inference systems from data , 2003 .

[122]  Witold Pedrycz,et al.  Data Mining Methods for Knowledge Discovery , 1998, IEEE Trans. Neural Networks.

[123]  Chuen-Chien Lee FUZZY LOGIC CONTROL SYSTEMS: FUZZY LOGIC CONTROLLER - PART I , 1990 .

[124]  Bart Kosko,et al.  Adaptive fuzzy systems for backing up a truck-and-trailer , 1992, IEEE Trans. Neural Networks.

[125]  Walenty Ostasiewicz,et al.  Towards Fuzzy Logic , 1999 .

[126]  Kok Wai Wong,et al.  A Feature Ranking Algorithm for Fuzzy Modelling Problems , 2003 .

[127]  Lotfi A. Zadeh,et al.  Graduation and granulation are keys to computation with information described in natural language , 2006, 2006 IEEE International Conference on Granular Computing.

[128]  Palma Blonda,et al.  A survey of fuzzy clustering algorithms for pattern recognition. I , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[129]  Detlef Nauck,et al.  Foundations Of Neuro-Fuzzy Systems , 1997 .

[130]  Joos Vandewalle,et al.  Constructing fuzzy models with linguistic integrity from numerical data-AFRELI algorithm , 2000, IEEE Trans. Fuzzy Syst..

[131]  H. Ishibuchi,et al.  Empirical study on learning in fuzzy systems by rice taste analysis , 1994 .

[132]  Kevin Knight,et al.  Connectionist ideas and algorithms , 1990, CACM.

[133]  Henri Prade,et al.  What are fuzzy rules and how to use them , 1996, Fuzzy Sets Syst..

[134]  Krzysztof Jajuga,et al.  Fuzzy clustering with squared Minkowski distances , 2001, Fuzzy Sets Syst..

[135]  R. P. Paiva,et al.  Merging and Constrained Learning for Interpretability in Neuro-Fuzzy Systems , 2003 .

[136]  Ryszard Kowalczyk On linguistic approximation of subnormal fuzzy sets , 1998, 1998 Conference of the North American Fuzzy Information Processing Society - NAFIPS (Cat. No.98TH8353).

[137]  Adolfo R. de Soto,et al.  A glance at implication and T-conditional functions , 2000 .

[138]  A. Bargiela Interval and ellipsoidal uncertainty models , 2001 .

[139]  Korris Fu-Lai Chung,et al.  Note on the relationship between probabilistic and fuzzy clustering , 2004, Soft Comput..

[140]  Uzay Kaymak,et al.  Similarity measures in fuzzy rule base simplification , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[141]  Alexander E. Gegov,et al.  Complexity Management in Fuzzy Systems - A Rule Base Compression Approach , 2007, Studies in Fuzziness and Soft Computing.

[142]  F. Jim Pareto-optimality in Fuzzy Modeling , 1998 .

[143]  Ming Li,et al.  Applying MDL to learn best model granularity , 2000, Artif. Intell..

[144]  Ludmila I. Kuncheva,et al.  Fuzzy Classifier Design , 2000, Studies in Fuzziness and Soft Computing.

[145]  Moshe Sipper,et al.  Fuzzy CoCo: Balancing Accuracy and Interpretability of Fuzzy Models by Means of Coevolution , 2003 .

[146]  Vincent Vanhoucke,et al.  Interpretability in Multidimensional Classification , 2003 .

[147]  Bernadette Bouchon-Meunier,et al.  Fuzzy Logic And Soft Computing , 1995 .

[148]  Spyros G. Tzafestas,et al.  Fuzzy relation equations and fuzzy inference systems: an inside approach , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[149]  Michelangelo Ceci,et al.  Top-down induction of model trees with regression and splitting nodes , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[150]  P. Glorennec Constrained Optimization of Fuzzy Decision Trees , 2003 .

[151]  Manuel Tarrazo,et al.  Schopenhauer's Prolegomenon to Fuzziness , 2004, Fuzzy Optim. Decis. Mak..

[152]  Zbigniew Michalewicz,et al.  Genetic algorithms + data structures = evolution programs (3rd ed.) , 1996 .

[153]  José Valente de Oliveira,et al.  Towards neuro-linguistic modeling: Constraints for optimization of membership functions , 1999, Fuzzy Sets Syst..

[154]  Jacek M. Zurada,et al.  Knowledge-based neurocomputing , 2000 .

[155]  Luis Magdalena,et al.  A Multiobjective Genetic Learning Process for joint Feature Selection and Granularity and Contexts Learning in Fuzzy Rule-Based Classification Systems , 2003 .

[156]  Witold Pedrycz,et al.  Granular computing: an introduction , 2001, Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference (Cat. No. 01TH8569).

[157]  G. A. Miller THE PSYCHOLOGICAL REVIEW THE MAGICAL NUMBER SEVEN, PLUS OR MINUS TWO: SOME LIMITS ON OUR CAPACITY FOR PROCESSING INFORMATION 1 , 1956 .

[158]  Paulo Salgado,et al.  Derivative Information from Fuzzy Models , 2007, WILF.

[159]  M. Roubens,et al.  Fuzzy logic : state of the art , 1993 .

[160]  Andri Riid,et al.  Transparent Fuzzy Systems and Modelling with Transparency Protection , 2000 .

[161]  Joos Vandewalle,et al.  Extracting Linguistic Fuzzy Models from Numerical Data-AFRELI Algorithm , 2003 .

[162]  Robert Shorten,et al.  On the interpretation and identification of dynamic Takagi-Sugeno fuzzy models , 2000, IEEE Trans. Fuzzy Syst..

[163]  B. Lazzerini,et al.  A fuzzy relational clustering algorithm based on a dissimilarity measure extracted from data , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[164]  John Fulcher,et al.  Computational Intelligence: An Introduction , 2008, Computational Intelligence: A Compendium.

[165]  Giovanna Castellano,et al.  Distinguishability quantification of fuzzy sets , 2007, Inf. Sci..

[166]  Qiang Shen,et al.  Selection of features in transparent fuzzy modelling , 2001, 10th IEEE International Conference on Fuzzy Systems. (Cat. No.01CH37297).

[167]  Francisco Herrera,et al.  A proposal for improving the accuracy of linguistic modeling , 2000, IEEE Trans. Fuzzy Syst..

[168]  Andrzej Piegat,et al.  Fuzzy Modeling and Control , 2001 .

[169]  Giovanna Castellano,et al.  DCf: a double clustering framework for fuzzy information granulation , 2005, 2005 IEEE International Conference on Granular Computing.

[170]  Chuen-Tsai Sun,et al.  Rule-base structure identification in an adaptive-network-based fuzzy inference system , 1994, IEEE Trans. Fuzzy Syst..

[171]  James C. Bezdek,et al.  On the relationship between neural networks, pattern recognition and intelligence , 1992, Int. J. Approx. Reason..

[172]  Gary G. Yen,et al.  Quantitative measures of the accuracy, comprehensibility, and completeness of a fuzzy expert system , 2002, 2002 IEEE World Congress on Computational Intelligence. 2002 IEEE International Conference on Fuzzy Systems. FUZZ-IEEE'02. Proceedings (Cat. No.02CH37291).

[173]  Andri Riid,et al.  Transparent Fuzzy Systems in Modelling and Control , 2003 .

[174]  Robert Ivor John,et al.  A case study to illustrate the use of non-convex membership functions for linguistic terms , 2004, 2004 IEEE International Conference on Fuzzy Systems (IEEE Cat. No.04CH37542).

[175]  Simon Haykin,et al.  Neural networks , 1994 .

[176]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[177]  Ian Witten,et al.  Data Mining , 2000 .

[178]  Plamen P. Angelov,et al.  An approach for fuzzy rule-base adaptation using on-line clustering , 2004, Int. J. Approx. Reason..