Modeling Color Difference for Visualization Design

Color is frequently used to encode values in visualizations. For color encodings to be effective, the mapping between colors and values must preserve important differences in the data. However, most guidelines for effective color choice in visualization are based on either color perceptions measured using large, uniform fields in optimal viewing environments or on qualitative intuitions. These limitations may cause data misinterpretation in visualizations, which frequently use small, elongated marks. Our goal is to develop quantitative metrics to help people use color more effectively in visualizations. We present a series of crowdsourced studies measuring color difference perceptions for three common mark types: points, bars, and lines. Our results indicate that peoples' abilities to perceive color differences varies significantly across mark types. Probabilistic models constructed from the resulting data can provide objective guidance for designers, allowing them to anticipate viewer perceptions in order to inform effective encoding design.

[1]  Michel Millodot Od PhD DOSc Faao FCOptom Dictionary of Optometry and Visual Science , 2000 .

[2]  Daniel A. Keim,et al.  ColorCAT: Guided Design of Colormaps for Combined Analysis Tasks , 2015, EuroVis.

[3]  Danielle Albers Szafir,et al.  Adapting Color Difference for Design , 2014, CIC.

[4]  Erik-Jan van der Linden,et al.  Generating Color Palettes using Intuitive Parameters , 2008, Comput. Graph. Forum.

[5]  Patrick Le Callet,et al.  A color matching experiment using two displays: design considerations and pilot test results , 2010, CGIV/MCS.

[6]  Jeffrey Heer,et al.  D³ Data-Driven Documents , 2011, IEEE Transactions on Visualization and Computer Graphics.

[7]  M. Luo,et al.  The development of the CIE 2000 Colour Difference Formula , 2001 .

[8]  Christopher G. Healey,et al.  Choosing effective colours for data visualization , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[9]  James P. Ahrens,et al.  Colormaps that Improve Perception of High-Resolution Ocean Data , 2015, CHI Extended Abstracts.

[10]  Roy S. Berns,et al.  Precision requirements for digital color reproduction , 1992, TOGS.

[11]  Cynthia A. Brewer,et al.  ColorBrewer.org: An Online Tool for Selecting Colour Schemes for Maps , 2003 .

[12]  R. McDonald,et al.  CIE94‐a new colour‐difference formula* , 2008 .

[13]  Mark D. Fairchild,et al.  Color Appearance Models , 1997, Computer Vision, A Reference Guide.

[14]  Hans-Peter Seidel,et al.  Perceptually Driven Visibility Optimization for Categorical Data Visualization , 2013, IEEE Transactions on Visualization and Computer Graphics.

[15]  Cynthia A. Brewer PREDICTION OF SIMULTANEOUS CONTRAST BETWEEN MAP COLORS WITH HUNT'S MODEL OF COLOR APPEARANCE , 1996 .

[16]  Cynthia A. Brewer,et al.  Evaluation of a Model for Predicting Simultaneous Contrast on Color Maps , 1997 .

[17]  David R. Flatla,et al.  Enabling Designers to Foresee Which Colors Users Cannot See , 2016, CHI.

[18]  Vidya Setlur,et al.  An Engineering Model for Color Difference as a Function of Size , 2014, CIC.

[19]  Heidrun Schumann,et al.  Task-Driven Color Coding , 2008, 2008 12th International Conference Information Visualisation.

[20]  Arzu Çöltekin,et al.  The effect of spatial distance on the discriminability of colors in maps , 2017 .

[21]  Arvind Satyanarayan,et al.  Vega-Lite: A Grammar of Interactive Graphics , 2018, IEEE Transactions on Visualization and Computer Graphics.

[22]  John J. Bertin,et al.  The semiology of graphics , 1983 .

[23]  John H. Krantz,et al.  Stimulus Delivery on the Web : What Can Be Presented when Calibration isn ’ t Possible , 2001 .

[24]  Jeffrey Heer,et al.  SpanningAspectRatioBank Easing FunctionS ArrayIn ColorIn Date Interpolator MatrixInterpola NumObjecPointI Rectang ISchedu Parallel Pause Scheduler Sequen Transition Transitioner Transiti Tween Co DelimGraphMLCon IData JSONCon DataField DataSc Dat DataSource Data DataUtil DirtySprite LineS RectSprite , 2011 .

[25]  Changjun Li,et al.  The CIECAM02 Color Appearance Model , 2002, CIC.

[26]  Sarah H. Creem-Regehr,et al.  Evaluating the Impact of Binning 2D Scalar Fields , 2017, IEEE Transactions on Visualization and Computer Graphics.

[27]  W. Cleveland,et al.  Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Methods , 1984 .

[28]  M. Luo,et al.  Effect of observer metamerism on colour matching of display and surface colours , 2008 .

[29]  Michael H. Brill,et al.  Color appearance models , 1998 .

[30]  A. Robertson Historical development of CIE recommended color difference equations , 1990 .

[31]  Daniel A. Keim,et al.  Methods for Compensating Contrast Effects in Information Visualization , 2014, Comput. Graph. Forum.

[32]  Michael Gleicher,et al.  Task-driven evaluation of aggregation in time series visualization , 2014, CHI.

[33]  Karen B. Schloss,et al.  The dark is more (Dark+) bias in colormap data visualizations with legends , 2016 .

[34]  Samuel S. Silva,et al.  Using color in visualization: A survey , 2011, Comput. Graph..

[35]  Peter Kovesi,et al.  Good Colour Maps: How to Design Them , 2015, ArXiv.

[36]  B. Wandell,et al.  Asymmetric color matching: how color appearance depends on the illuminant. , 1992, Journal of the Optical Society of America. A, Optics and image science.

[37]  T. Kohonen,et al.  Coloring that reveals high-dimensional structures in data , 1999, ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378).

[38]  Jeffrey Heer,et al.  Selecting Semantically‐Resonant Colors for Data Visualization , 2013, Comput. Graph. Forum.

[39]  Mark A. Livingston,et al.  Evaluation of Trend Localization with Multi-Variate Visualizations , 2011, IEEE Transactions on Visualization and Computer Graphics.

[40]  Lynne Baillie,et al.  Investigating Time Series Visualisations to Improve the User Experience , 2016, CHI.

[41]  Jeffrey Heer,et al.  Color naming models for color selection, image editing and palette design , 2012, CHI.

[42]  Patricia Rizzo,et al.  Color and brightness discrimination of white LEDs , 2002, SPIE Optics + Photonics.

[43]  Jimeng Sun,et al.  FacetAtlas: Multifaceted Visualization for Rich Text Corpora , 2010, IEEE Transactions on Visualization and Computer Graphics.

[44]  K. Mullen The contrast sensitivity of human colour vision to red‐green and blue‐yellow chromatic gratings. , 1985, The Journal of physiology.

[45]  Bernice E. Rogowitz,et al.  A rule-based tool for assisting colormap selection , 1995, Proceedings Visualization '95.

[46]  Klaus Mueller,et al.  Color Design for Illustrative Visualization , 2008, IEEE Transactions on Visualization and Computer Graphics.

[47]  L. V. Eycken,et al.  Evaluation of Uniform Color Spaces Developed after the Adoption of CIELAB and CIELUV , 1994, Color Research & Application.

[48]  David H. Laidlaw,et al.  Colorgorical: Creating discriminable and preferable color palettes for information visualization , 2017, IEEE Transactions on Visualization and Computer Graphics.

[49]  Nathan Moroney,et al.  FIELD TRIALS OF THE CIECAM 02 COLOR APPEARANCE MODEL , .

[50]  Charles D. Hansen,et al.  A Survey of Colormaps in Visualization , 2016, IEEE Transactions on Visualization and Computer Graphics.

[51]  Mark Gahegan,et al.  Visual Semiotics & Uncertainty Visualization: An Empirical Study , 2012, IEEE Transactions on Visualization and Computer Graphics.

[52]  Steven Franconeri,et al.  Comparing averages in time series data , 2012, CHI.

[53]  Michael S. Bernstein,et al.  Learning Perceptual Kernels for Visualization Design , 2014, IEEE Transactions on Visualization and Computer Graphics.

[54]  Louis D. Silverstein,et al.  Size matters: Improved color‐difference estimation for small visual targets , 2010 .