Square-Free Non-Cayley Numbers. On Vertex-Transitive Non-Cayley Graphs of Square-Free Order

AbstractA complete classification is given of finite primitive permutation groups which contain a regular subgroup of square-free order. Then a collection $${\cal P}{\cal N}{\cal C}$$ of square-free numbers n is obtained such that there exists a vertex-primitive non-Cayley graph on n vertices if and only if n is a member of $${\cal P}{\cal N}{\cal C}$$.

[1]  Cheryl E. Praeger,et al.  On vertex-imprimitive graphs of order a product of three distinct odd primes , 1998 .

[2]  N. Biggs Algebraic Graph Theory: COLOURING PROBLEMS , 1974 .

[3]  Ming-Yao Xu,et al.  Vertex primitive graphs of order containing a large prime factor , 1994 .

[4]  Cheryl E. Praeger,et al.  Non-Cayley Vertex-Transitive Graphs of Order Twice the Product of Two Odd Primes , 1994 .

[5]  Hans Zassenhaus,et al.  Über endliche Fastkörper , 1935 .

[6]  Cheryl E. Praeger,et al.  Vertex-primitive groups and graphs of order twice the product of two distinct odd primes , 2000 .

[7]  Ákos Seress On vertex-transitive, non-Cayley graphs of order pqr , 1998, Discret. Math..

[8]  Brian Alspach,et al.  VERTEX‐TRANSITIVE GRAPHS OF ORDER 2p , 1979 .

[9]  Ascher Wagner,et al.  Transitivity of finite permutation groups on unordered sets , 1965 .

[10]  Brendan D. McKay,et al.  Vertex-transitive graphs that are not Cayley graphs. II , 1996, J. Graph Theory.

[11]  Ascher Wagner,et al.  Transitivity of finite permutation groups on unordered , 1965 .

[12]  Cheryl E. Praeger,et al.  On Non-Cayley Vertex-Transitive Graphs of Order a Product of Three Primes , 2001, J. Comb. Theory, Ser. B.

[13]  Cai Heng Li,et al.  The Finite Primitive Permutation Groups Containing an Abelian Regular Subgroup , 2003 .

[14]  A. Borel,et al.  Éléments unipotents et sous-groupes paraboliques de groupes réductifs. I , 1971 .

[15]  Ákos Seress,et al.  The Primitive Permutation Groups of Squarefree Degree , 2003 .

[16]  Dragan Marušič,et al.  On quasiprimitive pqr-graphs , 1995 .

[17]  Dragan Marusic,et al.  Characterizing vertex-transitive pq-graphs with an imprimitive automorphism subgroup , 1992, J. Graph Theory.

[18]  Brendan D. McKay,et al.  Vertex-transitive graphs which are not Cayley graphs, I , 1994, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[19]  Peter M. Neumann Helmut Wielandt on permutation groups , 1994 .

[20]  Bertram Huppert,et al.  Finite Groups III , 1982 .

[21]  K. Zsigmondy,et al.  Zur Theorie der Potenzreste , 1892 .

[22]  Brian Alspach,et al.  A Construction for Vertex-Transitive Graphs , 1982, Canadian Journal of Mathematics.

[23]  Cheryl E. Praeger,et al.  Vertex-Primitive Graphs of Order a Product of Two Distinct Primes , 1993, J. Comb. Theory, Ser. B.

[24]  Cheryl E. Praeger,et al.  The maximal factorizations of the finite simple groups and their automorphism groups , 1990 .

[25]  William M. Kantor,et al.  k-Homogeneous groups , 1972 .

[26]  J. Conway,et al.  ATLAS of Finite Groups , 1985 .

[27]  J. Dixon,et al.  Permutation Groups , 1996 .