Approximate Fast Graph Fourier Transforms via Multilayer Sparse Approximations
暂无分享,去创建一个
Nicolas Tremblay | Remi Gribonval | Luc Le Magoarou | R. Gribonval | Nicolas Tremblay | Luc Le Magoarou
[1] Xin Wang,et al. On Algorithms for Sparse Multi-factor NMF , 2013, NIPS.
[2] Pierre Vandergheynst,et al. Wavelets on Graphs via Spectral Graph Theory , 2009, ArXiv.
[3] Michael Elad,et al. Trainlets: Dictionary Learning in High Dimensions , 2016, IEEE Transactions on Signal Processing.
[4] G. Golub,et al. Eigenvalue computation in the 20th century , 2000 .
[5] José M. F. Moura,et al. Discrete Signal Processing on Graphs: Frequency Analysis , 2013, IEEE Transactions on Signal Processing.
[6] Alston S. Householder,et al. Unitary Triangularization of a Nonsymmetric Matrix , 1958, JACM.
[7] José M. F. Moura,et al. Discrete Signal Processing on Graphs , 2012, IEEE Transactions on Signal Processing.
[8] Laurent Demanet,et al. Fast Computation of Fourier Integral Operators , 2006, SIAM J. Sci. Comput..
[9] Jean-Yves Tourneret,et al. Optimization of a Fast Transform Structured as a Convolutional Tree , 2016 .
[10] Cristopher Moore,et al. Asymptotic analysis of the stochastic block model for modular networks and its algorithmic applications , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.
[11] Don Coppersmith,et al. Matrix multiplication via arithmetic progressions , 1987, STOC.
[12] Bing Zeng,et al. Design of non-separable transforms for directional 2-D sources , 2011, 2011 18th IEEE International Conference on Image Processing.
[13] R. Brent,et al. The Solution of Singular-Value and Symmetric Eigenvalue Problems on Multiprocessor Arrays , 1985 .
[14] Rémi Gribonval,et al. Flexible Multilayer Sparse Approximations of Matrices and Applications , 2015, IEEE Journal of Selected Topics in Signal Processing.
[15] Jacques Morgenstern,et al. The Linear Complexity of Computation , 1975, JACM.
[16] José M. F. Moura,et al. Big Data Analysis with Signal Processing on Graphs: Representation and processing of massive data sets with irregular structure , 2014, IEEE Signal Processing Magazine.
[17] Pierre Vandergheynst,et al. Compressive Spectral Clustering , 2016, ICML.
[18] R. Coifman,et al. Fast wavelet transforms and numerical algorithms I , 1991 .
[19] Robert W. Heath,et al. Fast Orthonormal Sparsifying Transforms Based on Householder Reflectors , 2016, IEEE Transactions on Signal Processing.
[20] V. Strassen. Gaussian elimination is not optimal , 1969 .
[21] Rémi Gribonval,et al. Are there approximate fast fourier transforms on graphs? , 2016, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
[22] Wolfgang Hackbusch,et al. A Sparse Matrix Arithmetic Based on H-Matrices. Part I: Introduction to H-Matrices , 1999, Computing.
[23] J. Tukey,et al. An algorithm for the machine calculation of complex Fourier series , 1965 .
[24] C. Jacobi. Über ein leichtes Verfahren die in der Theorie der Säcularstörungen vorkommenden Gleichungen numerisch aufzulösen*). , 2022 .
[25] Robert H. Halstead,et al. Matrix Computations , 2011, Encyclopedia of Parallel Computing.
[26] Vikas K. Garg,et al. Multiresolution Matrix Factorization , 2014, ICML.
[27] Risi Kondor,et al. Multiresolution Matrix Compression , 2016, AISTATS.
[28] Michael Elad,et al. Double Sparsity: Learning Sparse Dictionaries for Sparse Signal Approximation , 2010, IEEE Transactions on Signal Processing.
[29] Wen-Hsiung Chen,et al. A Fast Computational Algorithm for the Discrete Cosine Transform , 1977, IEEE Trans. Commun..
[30] Marc Teboulle,et al. Proximal alternating linearized minimization for nonconvex and nonsmooth problems , 2013, Mathematical Programming.
[31] Jean-Yves Tourneret,et al. Toward Fast Transform Learning , 2014, International Journal of Computer Vision.
[32] Charles A. Bouman,et al. The Sparse Matrix Transform for Covariance Estimation and Analysis of High Dimensional Signals , 2011, IEEE Transactions on Image Processing.
[33] Bing Zeng,et al. Design of low-complexity, non-separable 2-D transforms based on butterfly structures , 2012, 2012 IEEE International Symposium on Circuits and Systems.
[34] T. Dupont,et al. Polynomial approximation of functions in Sobolev spaces , 1980 .
[35] Ann B. Lee,et al. Treelets--An adaptive multi-scale basis for sparse unordered data , 2007, 0707.0481.
[36] Duncan J. Watts,et al. Collective dynamics of ‘small-world’ networks , 1998, Nature.
[37] W. Givens. Computation of Plain Unitary Rotations Transforming a General Matrix to Triangular Form , 1958 .
[38] Pierre Vandergheynst,et al. GSPBOX: A toolbox for signal processing on graphs , 2014, ArXiv.
[39] Elwood S. Buffa,et al. Graph Theory with Applications , 1977 .
[40] V. Rokhlin. Rapid solution of integral equations of classical potential theory , 1985 .
[41] Pascal Frossard,et al. The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains , 2012, IEEE Signal Processing Magazine.
[42] C. Jacobi,et al. C. G. J. Jacobi's Gesammelte Werke: Über ein leichtes Verfahren, die in der Theorie der Sacularstorungen vorkommenden Gleichungen numerisch aufzulosen , 1846 .
[43] François Le Gall,et al. Powers of tensors and fast matrix multiplication , 2014, ISSAC.