Ionospheric Modelling using GPS to Calibrate the MWA. II: Regional Ionospheric Modelling using GPS and GLONASS to Estimate Ionospheric Gradients

Abstract We estimate spatial gradients in the ionosphere using the Global Positioning System and GLONASS (Russian global navigation system) observations, utilising data from multiple Global Positioning System stations in the vicinity of Murchison Radio-astronomy Observatory. In previous work, the ionosphere was characterised using a single-station to model the ionosphere as a single layer of fixed height and this was compared with ionospheric data derived from radio astronomy observations obtained from the Murchison Widefield Array. Having made improvements to our data quality (via cycle slip detection and repair) and incorporating data from the GLONASS system, we now present a multi-station approach. These two developments significantly improve our modelling of the ionosphere. We also explore the effects of a variable-height model. We conclude that modelling the small-scale features in the ionosphere that have been observed with the MWA will require a much denser network of Global Navigation Satellite System stations than is currently available at the Murchison Radio-astronomy Observatory.

[1]  Stephanie Thalberg,et al.  Interferometry And Synthesis In Radio Astronomy , 2016 .

[2]  G. Swenson,et al.  Interferometry and Synthesis in Radio Astronomy , 1986 .

[3]  P. Murdin MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY , 2005 .

[4]  Donald P. Massa Developments in electromagnetic (variable reluctance) transducers for the generation of low‐frequency, high‐power underwater sound , 1994 .

[5]  L. Mervart,et al.  Bernese GPS Software Version 5.0 , 2007 .

[6]  Namir E. Kassim,et al.  The Long Wavelength Array , 2009, Proceedings of the IEEE.

[7]  Atsunori Yonehara,et al.  Publications of the Astronomical Society of Australia , 2000 .

[8]  Benjamin W. Remondi,et al.  PERFORMING CENTIMETER-LEVEL SURVEYS IN SECONDS WITH GPS CARRIER PHASE: INITIAL RESULTS , 1985 .

[9]  Peter J. Hall The square kilometre array: an engineering perspective , 2005 .

[10]  Mohamed-Slim Alouini Global Positioning System: an Overview , 2022 .

[11]  A. R. Whitney,et al.  Ionospheric Modelling using GPS to Calibrate the MWA. I: Comparison of First Order Ionospheric Effects between GPS Models and MWA Observations , 2015, Publications of the Astronomical Society of Australia.

[12]  E. Lenc,et al.  GLEAM: The GaLactic and Extragalactic All-Sky MWA Survey , 2015, Publications of the Astronomical Society of Australia.

[13]  A. R. Whitney,et al.  The Murchison Widefield Array: The Square Kilometre Array Precursor at Low Radio Frequencies , 2012, Publications of the Astronomical Society of Australia.

[14]  Peter Teunissen,et al.  GPS for geodesy , 1996 .

[15]  Richard B. Langley,et al.  Ingesting GPS-derived TEC data into the International Reference Ionosphere for single frequency radar altimeter ionospheric delay corrections , 1998 .

[16]  T. Murphy,et al.  Quantifying ionospheric effects on time-domain astrophysics with the Murchison Widefield Array , 2015, 1508.00965.

[17]  Yehuda Bock,et al.  GLOBAL POSITIONING SYSTEM: AN OVERVIEW , 1990 .

[18]  Bernhard Hofmann-Wellenhof,et al.  GNSS - Global Navigation Satellite Systems , 2008 .

[19]  Michael G. Sideris International Association of Geodesy Symposia , 2009 .

[20]  Alan E. E. Rogers,et al.  The Murchison Widefield Array: Design Overview , 2009, Proceedings of the IEEE.

[21]  Mervyn J. Lynch,et al.  THE PRECISION ARRAY FOR PROBING THE EPOCH OF RE-IONIZATION: EIGHT STATION RESULTS , 2009, 0904.2334.

[22]  D. Sentman,et al.  EFFECTS OF THUNDERSTORM ACTIVITY ON THE UPPER ATMOSPHERE AND IONOSPHERE : SPECIAL ISSUE OF THE JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS , 1998 .

[23]  A. D. Sarma,et al.  Effects of Pseudolite Positioning on DOP in LAAS , 2010 .