Comparative analysis of FUR regulons in gamma-proteobacteria.

Iron is an essential element for the survival and pathogenesis of bacteria. The strict control of iron homeostasis is mediated by the FUR repressor, which is highly conserved among various bacterial species. Here we apply the comparative genomics approach to analyze candidate Fur-binding sites in the genomes of Escherichia coli (K12 and O157:H7), Salmonella typhi, Yersinia pestis and Vibrio cholerae. We describe a number of new loci encoding siderophore biosynthesis and transport proteins. A new regulator of iron-acquisition systems was found in S.typhi. We predict FUR regulation for several virulence systems. We also predict FUR regulation for the chemotaxis system of V.cholerae that is probably involved in the process of pathogenesis.

[1]  F. Blattner,et al.  Iron acquisition in plague: modular logic in enzymatic biogenesis of yersiniabactin by Yersinia pestis. , 1998, Chemistry & biology.

[2]  K. Hantke,et al.  Fur regulon in gram-negative bacteria. Identification and characterization of new iron-regulated Escherichia coli genes by a fur titration assay. , 1994, Journal of molecular biology.

[3]  G. Church,et al.  Conservation of DNA regulatory motifs and discovery of new motifs in microbial genomes. , 2000, Genome research.

[4]  J. Thompson,et al.  The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. , 1997, Nucleic acids research.

[5]  H. Mori,et al.  A 718-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 12.7-28.0 min region on the linkage map. , 1996, DNA research : an international journal for rapid publication of reports on genes and genomes.

[6]  D. Griggs,et al.  Mechanism for iron-regulated transcription of the Escherichia coli cir gene: metal-dependent binding of fur protein to the promoters , 1989, Journal of bacteriology.

[7]  M. Osburne,et al.  Sequence and genetic organization of a Bacillus subtilis operon encoding 2,3-dihydroxybenzoate biosynthetic enzymes. , 1996, Gene.

[8]  L. Sherman,et al.  Cloning, nucleotide sequence, and mutagenesis of a gene (irpA) involved in iron-deficient growth of the cyanobacterium Synechococcus sp. strain PCC7942 , 1988, Journal of bacteriology.

[9]  Hiroyuki Ogata,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 1999, Nucleic Acids Res..

[10]  S. Payne,et al.  A Multifunctional ATP-Binding Cassette Transporter System from Vibrio cholerae Transports Vibriobactin and Enterobactin , 1999, Journal of bacteriology.

[11]  K. Hantke,et al.  FhuF, an iron-regulated protein of Escherichia coli with a new type of [2Fe-2S] center. , 1998, European journal of biochemistry.

[12]  S. Payne,et al.  Cloning of a Vibrio cholerae vibriobactin gene cluster: identification of genes required for early steps in siderophore biosynthesis , 1997, Journal of bacteriology.

[13]  K. Hantke,et al.  Hemin uptake system of Yersinia enterocolitica: similarities with other TonB‐dependent systems in gram‐negative bacteria. , 1992, The EMBO journal.

[14]  J. H. Crosa,et al.  Characterization and regulation of the expression of FatB, an iron transport protein encoded by the pJM1 virulence plasmid , 1995, Molecular microbiology.

[15]  V. Braun,et al.  Novel two-component transmembrane transcription control: regulation of iron dicitrate transport in Escherichia coli K-12 , 1990, Journal of bacteriology.

[16]  D. Heinrichs,et al.  Cloning and sequence analysis of a gene (pchR) encoding an AraC family activator of pyochelin and ferripyochelin receptor synthesis in Pseudomonas aeruginosa , 1993, Journal of bacteriology.

[17]  A A Mironov,et al.  Regulation of aromatic amino acid biosynthesis in gamma-proteobacteria. , 2001, Journal of molecular microbiology and biotechnology.

[18]  S. Payne,et al.  Iron-regulated hemolysin production and utilization of heme and hemoglobin by Vibrio cholerae , 1988, Infection and immunity.

[19]  J. Helmann,et al.  Bacillus subtilis contains multiple Fur homologues: identification of the iron uptake (Fur) and peroxide regulon (PerR) repressors , 1998, Molecular microbiology.

[20]  Mikhail S. Gelfand,et al.  Comparative Analysis of Regulatory Patterns in Bacterial Genomes , 2000, Briefings Bioinform..

[21]  J. H. Crosa,et al.  Characterization of the Interaction between Fur and the Iron Transport Promoter of the Virulence Plasmid in Vibrio anguillarum * , 1998, The Journal of Biological Chemistry.

[22]  S. Payne,et al.  Vibrio cholerae iron transport: haem transport genes are linked to one of two sets of tonB, exbB, exbD genes , 1998, Molecular microbiology.

[23]  V. de Lorenzo,et al.  Metal ion regulation of gene expression. Fur repressor-operator interaction at the promoter region of the aerobactin system of pColV-K30. , 1988, Journal of molecular biology.

[24]  D. Kozyrev,et al.  A method for direct cloning of fur-regulated genes: identification of seven new fur-regulated loci in Escherichia coli. , 2000, Microbiology.

[25]  B. Roe,et al.  Analysis of the alcABC operon encoding alcaligin biosynthesis enzymes in Bordetella bronchiseptica. , 1997, Gene.

[26]  M. Vasil,et al.  Gene repression by the ferric uptake regulator in Pseudomonas aeruginosa: cycle selection of iron-regulated genes. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[27]  M L Howell,et al.  An operon containing fumC and sodA encoding fumarase C and manganese superoxide dismutase is controlled by the ferric uptake regulator in Pseudomonas aeruginosa: fur mutants produce elevated alginate levels , 1997, Journal of bacteriology.

[28]  M S Gelfand,et al.  Recognition of regulatory sites by genomic comparison. , 1999, Research in microbiology.

[29]  E. Koonin,et al.  Prediction of transcription regulatory sites in Archaea by a comparative genomic approach. , 2000, Nucleic acids research.

[30]  V. Braun,et al.  Sequence of the fhuE outer‐membrane receptor gene of Escherichia coli K12 and properties of mutants , 1990, Molecular microbiology.

[31]  R. Freter,et al.  Effect of chemotaxis on the interaction of cholera vibrios with intestinal mucosa. , 1979, The American journal of clinical nutrition.

[32]  V. Braun,et al.  Cloning and expression of the fhu genes involved in iron(III)-hydroxamate uptake by Escherichia coli , 1983, Journal of bacteriology.

[33]  D. V. D. Helm,et al.  Iron Transport in Microbes, Plants and Animals , 1987 .

[34]  B. Halliwell,et al.  Oxygen toxicity, oxygen radicals, transition metals and disease. , 1984, The Biochemical journal.

[35]  F. Heffron,et al.  Fur regulon of Salmonella typhimurium: identification of new iron-regulated genes , 1995, Journal of bacteriology.

[36]  S. Calderwood,et al.  Identification, cloning, and sequencing of a gene required for ferric vibriobactin utilization by Vibrio cholerae , 1994, Journal of bacteriology.

[37]  S. Calderwood,et al.  Role of iron in regulation of virulence genes , 1993, Clinical Microbiology Reviews.

[38]  R. Perry,et al.  YbtA, an AraC‐type regulator of the Yersinia pestis pesticin/yersiniabactin receptor , 1996, Molecular microbiology.

[39]  A A Mironov,et al.  Transcriptional regulation of transport and utilization systems for hexuronides, hexuronates and hexonates in gamma purple bacteria , 2000, Molecular microbiology.

[40]  C. Locht,et al.  Identification of AlcR, an AraC-Type Regulator of Alcaligin Siderophore Synthesis in Bordetella bronchiseptica and Bordetella pertussis , 1998, Journal of bacteriology.

[41]  J. Liu,et al.  Phylogenetic footprinting of transcription factor binding sites in proteobacterial genomes. , 2001, Nucleic acids research.

[42]  J. Lillard,et al.  HmsT, a protein essential for expression of the haemin storage (Hms+) phenotype of Yersinia pestis. , 1999, Microbiology.

[43]  E. Forest,et al.  Conformational changes of the ferric uptake regulation protein upon metal activation and DNA binding; first evidence of structural homologies with the diphtheria toxin repressor. , 2001 .

[44]  A. Torres,et al.  Haem iron‐transport system in enterohaemorrhagic Escherichia coli O157:H7 , 1997, Molecular microbiology.

[45]  T. D. Schneider,et al.  Information content of binding sites on nucleotide sequences. , 1986, Journal of molecular biology.

[46]  E. Koonin,et al.  Computer analysis of transcription regulatory patterns in completely sequenced bacterial genomes. , 1999, Nucleic acids research.

[47]  M. Klempner,et al.  Yersinia pestis pH 6 antigen: genetic, biochemical, and virulence characterization of a protein involved in the pathogenesis of bubonic plague , 1990, Infection and immunity.

[48]  V. Singh,et al.  Molecular characterization of the ferric-uptake regulator, fur, from Staphylococcus aureus. , 2000, Microbiology.

[49]  M. Vasil,et al.  Genetics and regulation of two distinct haem-uptake systems, phu and has, in Pseudomonas aeruginosa. , 2000, Microbiology.

[50]  T. R. Ward,et al.  Iha: a Novel Escherichia coli O157:H7 Adherence-Conferring Molecule Encoded on a Recently Acquired Chromosomal Island of Conserved Structure , 2000, Infection and Immunity.

[51]  K. Makarova,et al.  Conservation of the binding site for the arginine repressor in all bacterial lineages , 2001, Genome Biology.

[52]  F. Neidhart Escherichia coli and Salmonella. , 1996 .

[53]  J. Liu,et al.  Mechanisms of TonB-catalyzed iron transport through the enteric bacterial cell envelope , 1993, Journal of bioenergetics and biomembranes.

[54]  P. Sparling,et al.  Isolation and analysis of a fur mutant of Neisseria gonorrhoeae , 1996, Journal of bacteriology.

[55]  J. H. Crosa,et al.  Antisense RNA, Fur, Iron, and the Regulation of Iron Transport Genes in Vibrio anguillarum* , 1996, The Journal of Biological Chemistry.

[56]  P. Watnick,et al.  Vibrio cholerae VibF Is Required for Vibriobactin Synthesis and Is a Member of the Family of Nonribosomal Peptide Synthetases , 2000, Journal of bacteriology.

[57]  S. Salzberg,et al.  Complete genome sequence of Neisseria meningitidis serogroup B strain MC58. , 2000, Science.