Fatigue crack growth in metals and alloys: mechanisms and micromechanics

AbstractFatigue crack growth has been studied using several new experimental tools in the past ten years. The observation of fatigue cracks during growth under high resolution conditions has shown that crack advance is an intermittent process. These results, when combined with measurements of crack opening, displacements, crack closure, crack tip strains, fractography, and other information, leads to a reasonable understanding of many intrinsic aspects of fatigue crack growth at ambient temperature in a number of metallic alloys. Models of fatigue crack growth are reviewed from the perspective of this understanding. No model has achieved the capability of predicting fatigue crack growth from a description of microstructural and mechanical properties. The factors limiting a deeper understanding of fatigue crack growth are also more clearly defined, which gives some direction for future research. This paper is a critical review of crack growth mechanisms, mainly for large fatigue cracks subject to constant ...

[1]  E. Wolf Fatigue crack closure under cyclic tension , 1970 .

[2]  B. R. Kirby,et al.  SLOW FATIGUE CRACK GROWTH AND THRESHOLD BEHAVIOUR IN AIR AND VACUUM OF COMMERCIAL ALUMINIUM ALLOYS , 1979 .

[3]  J. Baïlon,et al.  Theoretical model for FCGR near the threshold , 1981 .

[4]  L. Kunz,et al.  Threshold stress intensity and dislocation structures surrounding fatigue cracks in polycrystalline copper , 1984 .

[5]  D. Davidson,et al.  Experimental and theoretical strain distributions for stationary and growing cracks , 1990 .

[6]  A fatigue crack propagation model for strain hardening materials , 1977 .

[7]  N. M. Grinberg Stage II fatigue crack growth , 1984 .

[8]  P. C. Paris,et al.  A Critical Analysis of Crack Propagation Laws , 1963 .

[9]  G. G. Garrett,et al.  On the correlation between the C and m in the paris equation for fatigue crack propagation , 1988 .

[10]  D. Broek Some contributions of electron fractography to the theory of fracture , 1972 .

[11]  K. Minakawa,et al.  On crack closure in the near-threshold region , 1981 .

[12]  S. B. Chakrabortty A MODEL RELATING LOW CYCLE FATIGUE PROPERTIES AND MICROSTRUCTURE TO FATIGUE CRACK PROPAGATION RATES , 1979 .

[13]  Subra Suresh,et al.  Fatigue crack growth threshold concepts , 1984 .

[14]  K. Sadananda THEORETICAL ASPECTS OF FATIGUE AND CREEP CRACK GROWTH , 2013 .

[15]  F. Lin,et al.  A mathematical equation relating low cycle fatigue data to fatigue crack propagation rates , 1984 .

[16]  D. Davidson The distribution of strain within crack tip plastic zones , 1986 .

[17]  Doris Kuhlmann-Wilsdorf,et al.  Theory of plastic deformation: - properties of low energy dislocation structures , 1989 .

[18]  J. Rice,et al.  Plane strain deformation near a crack tip in a power-law hardening material , 1967 .

[19]  H. Wilsdorf The ductile fracture of metals: A microstructural viewpoint , 1983 .

[20]  B. Tomkins FATIGUE CRACK PROPAGATION: AN ANALYSIS. , 1968 .

[21]  D. L. Davidson,et al.  Fatigue-crack-tip plastic strains by the stereoimaging technique , 1980 .

[22]  D. Kuhlmann-wilsdorf,et al.  Dislocation behavior in fatigue , 1977 .

[23]  C. Laird Effect of dislocation substructures on fatigue fracture , 1977 .

[24]  H. Wilsdorf,et al.  Low energy dislocation structures associated with cracks in ductile fracture , 1986 .

[25]  D. Davidson,et al.  A low-frequency cyclic loading stage for the SEM , 1978 .

[26]  J. Lankford,et al.  THE EFFECT OF WATER VAPOR ON FATIGUE CRACK TIP MECHANICS IN 7075-T651 ALUMINUM ALLOY , 1983 .

[27]  A. Saxena,et al.  Low cycle fatigue, fatigue crack propagation and substructures in a series of polycrystalline Cu-Al alloys , 1975 .

[28]  Daniel Kujawski,et al.  A fatigue crack propagation model , 1984 .

[29]  P. Irving,et al.  The effect of air and vacuum environments on fatigue crack growth rates in Ti-6Al-4V , 1974, Metallurgical and Materials Transactions B.

[30]  Subra Suresh,et al.  Crack initiation in cyclic compression and its applications , 1985 .

[31]  P. E. Irving,et al.  Prediction of fatigue crack growth rates: theory, mechanisms, and experimental results , 1977 .

[32]  J. Cohen,et al.  The plastic zone and residual stress near a notch and a fatigue crack in HSLA steel , 1982 .

[33]  L. Reimer,et al.  Scanning Electron Microscopy , 1984 .

[34]  J. Lankford,et al.  Fatigue crack growth mechanics for Ti-6Al-4V (RA) in vacuum and humid air , 1984 .

[35]  T. Masumoto,et al.  Transmission Electron Microscope Study on the Structure around Fatigue Cracks of α-iron , 1976 .

[36]  A. H. Purcell,et al.  Transmission electron microscopy of the crack tip region of fatigued copper single crystals , 1973 .

[37]  David L. Davidson,et al.  The dependence of crack closure on fatigue loading variables , 1988 .

[38]  K. Koyanagi,et al.  Early stage crack tip dislocation morphology in fatigued copper , 1977 .

[39]  H. Wilsdorf,et al.  Crack initiation at dislocation cell boundaries in the ductile fracture of metals , 1977 .

[40]  N. M. Grinberg,et al.  Parameters and micromechanisms of fatigue crack growth in sheet magnesium alloy samples , 1981 .

[41]  N. M. Grinberg The effect of vacuum on fatigue crack growth , 1982 .

[42]  Morris E. Fine,et al.  Near-threshold fatigue crack propagation rates of dual-phase steels , 1984 .

[43]  David L. Davidson,et al.  Measurement of microdisplacements by machine vision photogrammetry (DISMAP) , 1991 .

[44]  R. W. Bauer,et al.  VOID INITIATION IN DUCTILE FRACTURE , 1973 .

[45]  R. Wanhill Fractography of fatigue crack propagation in 2024-T3 and 7075-16 aluminum alloys in air and vacuum , 1975 .

[46]  C. Bathias,et al.  Fatigue crack propagation in martensitic and austenitic steels , 1973 .

[47]  J. Weertman Theory of fatigue crack growth based on a BCS crack theory with work hardening , 1973 .

[48]  G. Glinka A cumulative model of fatigue crack growth , 1982 .

[49]  L. Rémy,et al.  Model of fatigue crack propagation by damage accumulation at the crack tip , 1983 .

[50]  H. Homma,et al.  Numerical analysis of fatigue striations , 1984 .

[51]  R. C. McClung,et al.  High resolution numerical and experimental studies of fatigue cracks , 1991 .

[52]  John W. Hutchinson,et al.  Singular behaviour at the end of a tensile crack in a hardening material , 1968 .

[53]  D. L. Holt,et al.  Dislocation Cell Formation in Metals , 1970 .

[54]  M. Klesnil,et al.  Dislocation structure associated with fracture surface of fatigued copper single crystals , 1968 .

[55]  H. W. Liu Fatigue Crack Propagation and Applied Stress Range—An Energy Approach , 1963 .

[56]  D. Davidson The growth of fatigue cracks through particulate sic reinforced aluminum alloys , 1989 .

[57]  MACROSCOPIC RESIDUAL STRESS DISTRIBUTION AT A FATIGUE CRACK TIP , 1979 .