Feature Selection: A perspective on inter-attribute cooperation

[1]  Xiaojian Hu,et al.  A novel ensemble feature selection method by integrating multiple ranking information combined with an SVM ensemble model for enterprise credit risk prediction in the supply chain , 2022, Expert Syst. Appl..

[2]  Tianrui Li,et al.  R2CI: Information theoretic-guided feature selection with multiple correlations , 2022, Pattern Recognit..

[3]  C. Schaerer,et al.  Measuring Interactions in Categorical Datasets Using Multivariate Symmetrical Uncertainty , 2021, Entropy.

[4]  Shengyi Jiang,et al.  A feature selection method via analysis of relevance, redundancy, and interaction , 2021, Expert Syst. Appl..

[5]  Chao Li,et al.  A new feature selection algorithm based on relevance, redundancy and complementarity , 2020, Comput. Biol. Medicine.

[6]  Federico Divina,et al.  A multivariate approach to the symmetrical uncertainty measure: Application to feature selection problem , 2019, Inf. Sci..

[7]  Nada Almugren,et al.  A Survey on Hybrid Feature Selection Methods in Microarray Gene Expression Data for Cancer Classification , 2019, IEEE Access.

[8]  Yuan-Shun Dai,et al.  Feature selection based on feature interactions with application to text categorization , 2019, Expert Syst. Appl..

[9]  Jan Mielniczuk,et al.  Information-Theoretic Feature Selection Using High-Order Interactions , 2018, LOD.

[10]  Robert Jenssen,et al.  Multivariate Extension of Matrix-Based Rényi's $\alpha$α-Order Entropy Functional , 2018, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Shulin Wang,et al.  Feature selection in machine learning: A new perspective , 2018, Neurocomputing.

[12]  Prakash P. Shenoy,et al.  An adaptive heuristic for feature selection based on complementarity , 2018, Machine Learning.

[13]  Joseph T. Lizier,et al.  Information Decomposition of Target Effects from Multi-Source Interactions: Perspectives on Previous, Current and Future Work , 2018, Entropy.

[14]  Abolfazl Razi,et al.  Game Theoretic Approach for Systematic Feature Selection; Application in False Alarm Detection in Intensive Care Units , 2018, Entropy.

[15]  Yuan-Shun Dai,et al.  Interaction-based feature selection using Factorial Design , 2017, Neurocomputing.

[16]  Usman Qamar,et al.  Dimensionality reduction approaches and evolving challenges in high dimensional data , 2017, IML.

[17]  Mostafa Ghazizadeh Ahsaee,et al.  Multivariate correlation coefficient and mutual information-based feature selection in intrusion detection , 2017, Inf. Secur. J. A Glob. Perspect..

[18]  K. Lavangnananda,et al.  Study of discretization methods in classification , 2017, 2017 9th International Conference on Knowledge and Smart Technology (KST).

[19]  António Pacheco,et al.  Theoretical foundations of forward feature selection methods based on mutual information , 2017, Neurocomputing.

[20]  Liwen Peng,et al.  RJMIM: A New Feature Selection Method Based On Joint Mutual Information , 2016 .

[21]  Xin Yao,et al.  A Survey on Evolutionary Computation Approaches to Feature Selection , 2016, IEEE Transactions on Evolutionary Computation.

[22]  James Bailey,et al.  Can high-order dependencies improve mutual information based feature selection? , 2016, Pattern Recognit..

[23]  Kewei Cheng,et al.  Feature Selection , 2016, ACM Comput. Surv..

[24]  Amparo Alonso-Betanzos,et al.  Feature selection for high-dimensional data , 2015, Progress in Artificial Intelligence.

[25]  Pablo A. Estévez,et al.  A review of feature selection methods based on mutual information , 2013, Neural Computing and Applications.

[26]  Rui Zhang,et al.  A novel feature selection method considering feature interaction , 2015, Pattern Recognit..

[27]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[28]  Hongjun Zhang,et al.  A Mixed Feature Selection Method Considering Interaction , 2015 .

[29]  Bin Ran,et al.  Feature selection with redundancy-complementariness dispersion , 2015, Knowl. Based Syst..

[30]  James Bailey,et al.  Reconsidering Mutual Information Based Feature Selection: A Statistical Significance View , 2014, AAAI.

[31]  Benjamin Flecker,et al.  Synergy, redundancy, and multivariate information measures: an experimentalist’s perspective , 2014, Journal of Computational Neuroscience.

[32]  Bangsheng Sui,et al.  INFORMATION GAIN FEATURE SELECTION BASED ON FEATURE INTERACTIONS , 2013 .

[33]  Rossitza Setchi,et al.  Feature Interaction Maximisation , 2013, Pattern Recognit. Lett..

[34]  Jin Li,et al.  Feature evaluation and selection with cooperative game theory , 2012, Pattern Recognit..

[35]  Christof Koch,et al.  Quantifying synergistic mutual information , 2012, ArXiv.

[36]  Nouman Azam,et al.  Incorporating Game Theory in Feature Selection for Text Categorization , 2011, RSFDGrC.

[37]  Edwin R. Hancock,et al.  A Graph-Based Approach to Feature Selection , 2011, GbRPR.

[38]  Yong Wang,et al.  Conditional Mutual Information‐Based Feature Selection Analyzing for Synergy and Redundancy , 2011, ETRI Journal.

[39]  Gianluca Bontempi,et al.  Causal filter selection in microarray data , 2010, ICML.

[40]  Catherine Dehon,et al.  Influence functions of the Spearman and Kendall correlation measures , 2010, Stat. Methods Appl..

[41]  Aidong Zhang,et al.  Mining of Attribute Interactions Using Information Theoretic Metrics , 2009, 2009 IEEE International Conference on Data Mining Workshops.

[42]  Huan Liu,et al.  Searching for interacting features in subset selection , 2009, Intell. Data Anal..

[43]  Francesca Odone,et al.  Feature selection for high-dimensional data , 2009, Comput. Manag. Sci..

[44]  Gianluca Bontempi,et al.  On the Use of Variable Complementarity for Feature Selection in Cancer Classification , 2006, EvoWorkshops.

[45]  Aleks Jakulin Machine Learning Based on Attribute Interactions , 2005 .

[46]  Ivan Kojadinovic,et al.  Relevance measures for subset variable selection in regression problems based on k , 2005, Comput. Stat. Data Anal..

[47]  Huan Liu,et al.  Efficient Feature Selection via Analysis of Relevance and Redundancy , 2004, J. Mach. Learn. Res..

[48]  Ivan Bratko,et al.  Testing the significance of attribute interactions , 2004, ICML.

[49]  Ivan Bratko,et al.  Quantifying and Visualizing Attribute Interactions , 2003, ArXiv.

[50]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[51]  David A. Bell,et al.  A Formalism for Relevance and Its Application in Feature Subset Selection , 2000, Machine Learning.

[52]  Ning Zhong,et al.  Using Rough Sets with Heuristics for Feature Selection , 1999, Journal of Intelligent Information Systems.

[53]  Ron Kohavi,et al.  Wrappers for Feature Subset Selection , 1997, Artif. Intell..

[54]  Pat Langley,et al.  Selection of Relevant Features and Examples in Machine Learning , 1997, Artif. Intell..

[55]  Daphne Koller,et al.  Toward Optimal Feature Selection , 1996, ICML.

[56]  T. Tsujishita,et al.  On Triple Mutual Information , 1994 .

[57]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[58]  Raymond W. Yeung,et al.  A new outlook of Shannon's information measures , 1991, IEEE Trans. Inf. Theory.

[59]  Te Sun Han,et al.  Slepian-Wolf-Cover Theorem for Networks of Channels , 1980, Inf. Control..

[60]  W. J. McGill Multivariate information transmission , 1954, Trans. IRE Prof. Group Inf. Theory.

[61]  E. Rowland Theory of Games and Economic Behavior , 1946, Nature.

[62]  Carlin Chun Fai Chu,et al.  Feature Selection Using Approximated High-Order Interaction Components of the Shapley Value for Boosted Tree Classifier , 2020, IEEE Access.

[63]  Gleb Gusev,et al.  Efficient High-Order Interaction-Aware Feature Selection Based on Conditional Mutual Information , 2016, NIPS.

[64]  Yuming Zhou,et al.  Selecting feature subset for high dimensional data via the propositional FOIL rules , 2013, Pattern Recognit..

[65]  Huan Liu,et al.  Feature Selection: An Ever Evolving Frontier in Data Mining , 2010, FSDM.

[66]  J. R. Vergara,et al.  CMIM-2: An Enhanced Conditional Mutual Information Maximization Criterion for Feature Selection , 2010 .

[67]  Huan Liu,et al.  Manipulating Data and Dimension Reduction Methods: Feature Selection , 2009, Encyclopedia of Complexity and Systems Science.

[68]  David S. Rosenberg,et al.  Feature Extraction , 2018, Encyclopedia of Social Network Analysis and Mining. 2nd Ed..

[69]  Driss Aboutajdine,et al.  A Powerful Feature Selection approach based on Mutual Information , 2008 .

[70]  Tommy W. S. Chow,et al.  Estimating optimal feature subsets using efficient estimation of high-dimensional mutual information , 2005, IEEE Transactions on Neural Networks.

[71]  William H. Press,et al.  Numerical recipes in C , 2002 .

[72]  Ron Kohavi,et al.  Feature Selection for Knowledge Discovery and Data Mining , 1998 .

[73]  Rich Caruana,et al.  How Useful Is Relevance , 1994 .

[74]  Alberto Maria Segre,et al.  Programs for Machine Learning , 1994 .

[75]  J. Neumann,et al.  Theory of games and economic behavior, 2nd rev. ed. , 1947 .