Results of the study of a new Ge-bearing area of the Pavlovka brown coal deposit are presented. Ge is accumulated in bed III2 lying at the bottom of the Late Paleogene-Early Neogene coal-bearing sequence adjacent to the Middle Paleozoic granite basement. The Ge content in coals and coal-bearing rocks varies in different sections from 10 to 200–250 ppm, reaching up to 500–600 ppm in the highest-grade lower part of the bed. The metalliferous area reveals a geochemical zoning: complex Ge-Mo-W anomalies subsequently grades along the depth and strike into Mo-W and W anomalies. Orebodies, like those at many Ge-bearing coal deposits, are concentric in plan and dome-shaped in cross-section. Coals in their central parts, in addition to Ge, W, and Mo, are enriched in U, As, Be, Ag, and Au. Distribution of Ge and other trace elements in the metalliferous sequence and products of gravity separation of Ge-bearing coals is studied. These data indicate that most elements (W, Mo, U, As, Be) concentrated like Ge in the Ge-bearing bed relative to background values are restricted to the organic matter of coals. The electron microscopic study shows that Ge-bearing coals contain native metals and intermetallic compounds in association with carbonates, sulfides, and halogenides. Coal inclusions in the metalliferous and barren areas of the molasse section strongly differ in contents of Ge and associated trace elements. Ge was accumulated in the coals in the course of the interaction of ascending metalliferous solutions with organic matter of the buried peat bogs in Late Miocene. The solutions were presumably represented by N2-bearing thermal waters (contaminated by volcanogenic CO2) that are typical of granite terranes.