Sea ice–ocean coupling using a rescaled vertical coordinate z*

Realistic representation of sea ice in ocean models involves the use of a non-linear free-surface, a real freshwater flux and observance of requisite conservation laws. We show here that these properties can be achieved in practice through use of a rescaled vertical coordinate ‘‘z � ”i nz-coordinate models that allows one to follow undulations in the free-surface under sea ice loading. In particular, the adoption of ‘‘z � ” avoids the difficult issue of vanishing levels under thick ice. Details of the implementation within MITgcm are provided. A high resolution global ocean sea ice simulation illustrates the robustness of the z � formulation and reveals a source of oceanic variability associ�

[1]  R. Huang,et al.  Real Freshwater Flux as a Natural Boundary Condition for the Salinity Balance and Thermohaline Circulation Forced by Evaporation and Precipitation , 1993 .

[2]  L. Perelman,et al.  Hydrostatic, quasi‐hydrostatic, and nonhydrostatic ocean modeling , 1997 .

[3]  David Rind,et al.  A coupled atmosphere‐ocean model for transient climate change studies , 1995 .

[4]  Michael Steele,et al.  Arctic Ice–Ocean Modeling with and without Climate Restoring , 1998 .

[5]  L. Perelman,et al.  A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers , 1997 .

[6]  H. Stommel The delicate interplay between wind-stress and buoyancy input in ocean circulation: the Goldsbrough variations* , 1984 .

[7]  M. Winton,et al.  A Reformulated Three-Layer Sea Ice Model , 2000 .

[8]  Alistair Adcroft,et al.  Rescaled height coordinates for accurate representation of free-surface flows in ocean circulation models , 2004 .

[9]  Nicholas R. T. Biggs,et al.  Polynya Dynamics: a Review of Observations and Modeling , 2004 .

[10]  Alistair Adcroft,et al.  Conservation of properties in a free-surface model , 2004 .

[11]  Michel Crucifix,et al.  The new hadley centre climate model (HadGEM1) : Evaluation of coupled simulations , 2006 .

[12]  A. Robert,et al.  An Implicit Time Integration Scheme for Baroclinic Models of the Atmosphere , 1972 .

[13]  Rainer Bleck,et al.  An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates , 2002 .

[14]  William D. Hibler,et al.  On an efficient numerical method for modeling sea ice dynamics , 1997 .

[15]  Chris Hill,et al.  Implementation of an Atmosphere-Ocean General Circulation Model on the Expanded Spherical Cube , 2004 .

[16]  H. Hellmer,et al.  Simulations of ice‐ocean dynamics in the Weddell Sea 1. Model configuration and validation , 2002 .

[17]  Patrick Heimbach,et al.  NASA Supercomputer Improves Prospects for Ocean Climate Research , 2005 .

[18]  Alistair Adcroft,et al.  Atmosphere–Ocean Modeling Exploiting Fluid Isomorphisms , 2004 .

[19]  T. Fichefet,et al.  Realistic representation of the surface freshwater flux in an ice–ocean general circulation model , 2001 .

[20]  J. Marshall,et al.  Mean Climate and Variability of the Atmosphere and Ocean on an Aquaplanet , 2007 .

[21]  S. Griffies,et al.  Tracer Conservation with an Explicit Free Surface Method for z-Coordinate Ocean Models , 2001 .

[22]  G. Schmidt,et al.  Ice–ocean boundary conditions for coupled models , 2004 .

[23]  Patrick Heimbach,et al.  OVERVIEW OF THE FORMULATION AND NUMERICS OF THE MIT GCM . vnorth uwest ueast vsouth wup , 2004 .

[24]  A. Jenkins,et al.  Adaptation of an Isopycnic Coordinate Ocean Model for the Study of Circulation beneath Ice Shelves , 2001 .

[25]  Gurvan Madec,et al.  Salt conservation, free surface, and varying levels: A new formulation for ocean general circulation models , 2000 .

[26]  Rüdiger Gerdes,et al.  The role of surface freshwater flux boundary conditions in Arctic Ocean modelling , 2006 .

[27]  F. Molteni Atmospheric simulations using a GCM with simplified physical parametrizations. I: model climatology and variability in multi-decadal experiments , 2003 .

[28]  H. Hellmer,et al.  NOTES AND CORRESPONDENCE The Role of Meltwater Advection in the Formulation of Conservative Boundary Conditions at an Ice-Ocean Interface , 2001 .

[29]  W. Hibler A Dynamic Thermodynamic Sea Ice Model , 1979 .

[30]  W. Large,et al.  Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization , 1994 .

[31]  Rüdiger Gerdes,et al.  Formulation of an ocean model for global climate simulations , 2005 .