Nanomaterials as electrochemical detectors in microfluidics and CE: Fundamentals, designs, and applications

The different approaches for constructing nanomaterial‐based detectors for conventional CE and microchip electrophoresis are described in this review. They include three main types of nanomaterials, including carbon nanotubes, nanoparticles, and nanorods in various designs. The fundamental reasons for the enhanced detection performance of nanomaterial‐based detectors, such as higher sensitivity, improved limits of detection, and higher peak capacity, are discussed in detail. Various applications for biomedical, food, and environmental analyses are reviewed.

[1]  Martin Pumera,et al.  The electrochemistry of carbon nanotubes: fundamentals and applications. , 2009, Chemistry.

[2]  J Justin Gooding,et al.  Demonstration of the importance of oxygenated species at the ends of carbon nanotubes for their favourable electrochemical properties. , 2005, Chemical communications.

[3]  C. Banks,et al.  Exploring the electrocatalytic sites of carbon nanotubes for NADH detection: an edge plane pyrolytic graphite electrode study. , 2005, The Analyst.

[4]  Mónica Moreno,et al.  Comparative study of multi walled carbon nanotubes-based electrodes in micellar media and their application to micellar electrokinetic capillary chromatography. , 2007, Talanta.

[5]  M. Pumera Electrochemical properties of double wall carbon nanotube electrodes , 2007, Nanoscale Research Letters.

[6]  Emanuel Carrilho,et al.  Adaptive nanowires for switchable microchip devices. , 2007, Analytical chemistry.

[7]  M. Pumera,et al.  Lab-on-a-chip for ultrasensitive detection of carbofuran by enzymatic inhibition with replacement of enzyme using magnetic beads. , 2009, Lab on a chip.

[8]  José M Pingarrón,et al.  Role of carbon nanotubes in electroanalytical chemistry: a review. , 2008, Analytica chimica acta.

[9]  Guobao Xu,et al.  Determination of concentrated hydrogen peroxide at single-walled carbon nanohorn paste electrode , 2008 .

[10]  A. Svatoš,et al.  Chemical modification of polymeric microchip devices. , 2007, Talanta.

[11]  M. Pumera,et al.  Phase-inversion method for incorporation of metal nanoparticles into carbon-nanotube/polymer composites. , 2009, Small.

[12]  Martin Pumera,et al.  Microchip electrophoresis with wall‐jet electrochemical detector: Influence of detection potential upon resolution of solutes , 2006, Electrophoresis.

[13]  Joseph Wang,et al.  Electrochemical activation of carbon nanotubes , 2005 .

[14]  M. Pumera,et al.  Electrochemical activation of carbon nanotube/polymer composites. , 2009, Physical chemistry chemical physics : PCCP.

[15]  Martin Pumera,et al.  Microchip Capillary Electrophoresis-Electrochemistry with Rigid Graphite-Epoxy Composite Detector , 2006 .

[16]  Gang Chen,et al.  Carbon-nanotube-alginate composite modified electrode fabricated by in situ gelation for capillary electrophoresis. , 2008, Chemistry.

[17]  Richard G. Compton,et al.  Design, fabrication, characterisation and application of nanoelectrode arrays , 2008 .

[18]  M. Pumera,et al.  Relationship between carbon nanotube structure and electrochemical behavior: heterogeneous electron transfer at electrochemically activated carbon nanotubes. , 2008, Chemistry, an Asian journal.

[19]  Joseph Wang Barcoded metal nanowires , 2008 .

[20]  Richard G Compton,et al.  Iron oxide particles are the active sites for hydrogen peroxide sensing at multiwalled carbon nanotube modified electrodes. , 2006, Nano letters.

[21]  Martin Pumera,et al.  Food analysis on microfluidic devices using ultrasensitive carbon nanotubes detectors. , 2007, Analytical chemistry.

[22]  Muhammad J A Shiddiky,et al.  Trace analysis of DNA: preconcentration, separation, and electrochemical detection in microchip electrophoresis using Au nanoparticles. , 2007, Analytical chemistry.

[23]  Gang Chen,et al.  Carbon nanotube/poly(methyl methacrylate) composite electrode for capillary electrophoretic measurement of honokiol and magnolol in Cortex Magnoliae Officinalis , 2006, Electrophoresis.

[24]  Richard G Compton,et al.  Carbon nanotubes contain metal impurities which are responsible for the "electrocatalysis" seen at some nanotube-modified electrodes. , 2006, Angewandte Chemie.

[25]  Che-Hsin Lin,et al.  Performance evaluation of a capillary electrophoresis electrochemical chip integrated with gold nanoelectrode ensemble working and decoupler electrodes. , 2008, Journal of chromatography. A.

[26]  Gang Chen Carbon nanotube and diamond as electrochemical detectors in microchip and conventional capillary electrophoresis. , 2007, Talanta.

[27]  P. He,et al.  Determination of carbohydrates by capillary zone electrophoresis with amperometric detection at a nano-nickel oxide modified carbon paste electrode , 2008 .

[28]  M. Pumera,et al.  The preferential electrocatalytic behaviour of graphite and multiwalled carbon nanotubes on enediol groups and their analytical implications in real domains. , 2009, The Analyst.

[29]  Trevor J. Davies,et al.  The cyclic and linear sweep voltammetry of regular and random arrays of microdisc electrodes: Theory , 2005 .

[30]  Gang Chen,et al.  Capillary electrophoresis microchip with a carbon nanotube-modified electrochemical detector. , 2004, Analytical chemistry.

[31]  Joseph Wang,et al.  On‐chip enzymatic assays , 2002, Electrophoresis.

[32]  Martin Pumera,et al.  Carbon nanotube disposable detectors in microchip capillary electrophoresis for water‐soluble vitamin determination: Analytical possibilities in pharmaceutical quality control , 2008, Electrophoresis.

[33]  Martin Pumera,et al.  Thick-film electrochemical detectors for poly(dimethylsiloxane)-based microchip capillary electrophoresis , 2002 .

[34]  Martin Pumera,et al.  Contactless conductivity detection for microfluidics: designs and applications. , 2007, Talanta.

[35]  P. Yáñez‐Sedeño,et al.  Gold nanoparticle-based electrochemical biosensors , 2005, Analytical and bioanalytical chemistry.

[36]  C. Banks,et al.  Voltammetry at spatially heterogeneous electrodes , 2005 .

[37]  M. Pumera,et al.  New materials for electrochemical sensing VI: Carbon nanotubes , 2005 .

[38]  Martin Pumera,et al.  Carbon nanotube detectors for microchip CE: Comparative study of single‐wall and multiwall carbon nanotube, and graphite powder films on glassy carbon, gold, and platinum electrode surfaces , 2007, Electrophoresis.

[39]  Martin Pumera,et al.  Carbon nanotubes contain residual metal catalyst nanoparticles even after washing with nitric acid at elevated temperature because these metal nanoparticles are sheathed by several graphene sheets. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[40]  Jingjing Xu,et al.  Carbon nanotube/polystyrene composite electrode for microchip electrophoretic determination of rutin and quercetin in Flos Sophorae Immaturus. , 2007, Talanta.

[41]  Gang Chen,et al.  Miniaturized capillary electrophoresis system with a carbon nanotube microelectrode for rapid separation and detection of thiols. , 2004, Talanta.

[42]  Joseph Wang,et al.  Electrochemical Detection for Capillary Electrophoresis Microchips: A Review , 2005 .

[43]  M. Schwarz,et al.  Determination of cationic neurotransmitters and metabolites in brain homogenates by microchip electrophoresis and carbon nanotube-modified amperometry. , 2007, Journal of chromatography. A.

[44]  Gang Chen,et al.  Carbon nanotube/poly(methyl methacrylate) (CNT/PMMA) composite electrode fabricated by in situ polymerization for microchip capillary electrophoresis. , 2007, Chemistry.

[45]  Martin Pumera,et al.  Towards an ultrasensitive method for the determination of metal impurities in carbon nanotubes. , 2008, Small.

[46]  Martin Pumera,et al.  Influence of nitric acid treatment of carbon nanotubes on their physico-chemical properties. , 2009, Journal of nanoscience and nanotechnology.

[47]  Gang Chen,et al.  Carbon-nanotube/copper composite electrodes for capillary electrophoresis microchip detection of carbohydrates. , 2004, The Analyst.

[48]  Martin Pumera,et al.  Towards lab-on-a-chip approaches in real analytical domains based on microfluidic chips/electrochemical multi-walled carbon nanotube platforms. , 2009, Lab on a chip.

[49]  Martin Pumera,et al.  Metallic impurities within residual catalyst metallic nanoparticles are in some cases responsible for "electrocatalytic" effect of carbon nanotubes. , 2009, Chemistry, an Asian journal.

[50]  Angel Ríos,et al.  Challenges of analytical microsystems , 2006 .

[51]  M. Pumera,et al.  Spontaneous coating of carbon nanotubes with an ultrathin polypyrrole layer. , 2007, Chemistry.

[52]  M. Pumera Imaging of oxygen-containing groups on walls of carbon nanotubes. , 2009, Chemistry, an Asian journal.

[53]  Martin Pumera,et al.  Microchip Capillary Electrophoresis with a Single-Wall Carbon Nanotube/Gold Electrochemical Detector for Determination of Aminophenols and Neurotransmitters , 2006 .

[54]  Jan Lichtenberg,et al.  Sample pretreatment on microfabricated devices. , 2002, Talanta.

[55]  G. Rivas,et al.  Analytical applications of glassy carbon electrodes modified with multi-wall carbon nanotubes dispersed in polyethylenimine as detectors in flow systems. , 2007, Analytica chimica acta.

[56]  Martin Pumera,et al.  Multicomponent Metallic Impurities and Their Influence upon the Electrochemistry of Carbon Nanotubes , 2009 .

[57]  Martin Pumera,et al.  New materials for electrochemical sensing VII. Microfluidic chip platforms , 2006 .

[58]  Martin Pumera,et al.  Bimetallic nickel-iron impurities within single-walled carbon nanotubes exhibit redox activity towards the oxidation of amino acids. , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.

[59]  N. Puviarasan,et al.  Vibrational spectra, assignments and normal coordinate calculation of acrylamide. , 2001, Talanta.

[60]  Martin Pumera,et al.  Microchip-based electrochromatography: designs and applications. , 2005, Talanta.