Invariant data-driven subgrid stress modeling in the strain-rate eigenframe for large eddy simulation

[1]  John A. Evans,et al.  Optimal Clipping of Structural Subgrid Stress Closures for Large-Eddy Simulation , 2022, AIAA Journal.

[2]  Kenneth E. Jansen,et al.  S-frame discrepancy correction models for data-informed Reynolds stress closure , 2020, J. Comput. Phys..

[3]  Richard D. Sandberg,et al.  Application of Gene Expression Programming to a-posteriori LES modeling of a Taylor Green Vortex , 2021, J. Comput. Phys..

[4]  Yifei Guan,et al.  Data-driven subgrid-scale modeling of forced Burgers turbulence using deep learning with generalization to higher Reynolds numbers via transfer learning , 2020, Physics of Fluids.

[5]  Scott M. Murman,et al.  Parameter Estimation for RANS Models Using Approximate Bayesian Computation , 2020, 2011.01231.

[6]  C. Xie,et al.  Artificial neural network-based nonlinear algebraic models for large eddy simulation of turbulence , 2020, Physics of Fluids.

[7]  K. Carlson,et al.  Turbulent Flows , 2020, Finite Analytic Method in Flows and Heat Transfer.

[8]  Peter E. Hamlington,et al.  Parameter Estimation for Subgrid-Scale Models Using Markov Chain Monte Carlo Approximate Bayesian Computation. , 2020, 2005.13993.

[9]  W. E,et al.  Modeling subgrid-scale forces by spatial artificial neural networks in large eddy simulation of turbulence , 2020 .

[10]  John A. Evans,et al.  Optimal Clipping of the Gradient Model for Subgrid Stress Closure , 2020, AIAA Scitech 2021 Forum.

[11]  G. He,et al.  Subgrid-scale model for large-eddy simulation of isotropic turbulent flows using an artificial neural network , 2019, Computers & Fluids.

[12]  John A. Evans,et al.  Generalized Non-Linear Eddy Viscosity Models for Data-Assisted Reynolds Stress Closure , 2019 .

[13]  Heng Xiao,et al.  Representation of stress tensor perturbations with application in machine-learning-assisted turbulence modeling , 2019, Computer Methods in Applied Mechanics and Engineering.

[14]  Jamey D. Jacob,et al.  Sub-grid scale model classification and blending through deep learning , 2018, Journal of Fluid Mechanics.

[15]  Karthik Duraisamy,et al.  Turbulence Modeling in the Age of Data , 2018, Annual Review of Fluid Mechanics.

[16]  Jianren Fan,et al.  Investigations of data-driven closure for subgrid-scale stress in large-eddy simulation , 2018, Physics of Fluids.

[17]  Omer San,et al.  A neural network approach for the blind deconvolution of turbulent flows , 2017, Journal of Fluid Mechanics.

[18]  Jinlong Wu,et al.  Physics-informed machine learning approach for reconstructing Reynolds stress modeling discrepancies based on DNS data , 2016, 1606.07987.

[19]  J. Templeton,et al.  Reynolds averaged turbulence modelling using deep neural networks with embedded invariance , 2016, Journal of Fluid Mechanics.

[20]  Yuji Hattori,et al.  Searching for turbulence models by artificial neural network , 2016, 1607.01042.

[21]  Alexander Linke,et al.  Pressure-robustness and discrete Helmholtz projectors in mixed finite element methods for the incompressible Navier--Stokes equations , 2016 .

[22]  Ryan N King,et al.  Autonomic closure for turbulence simulations. , 2016, Physical review. E.

[23]  Antony Jameson,et al.  Explicit filtering and exact reconstruction of the sub-filter stresses in large eddy simulation , 2016, J. Comput. Phys..

[24]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[25]  Philippe R. Spalart,et al.  Philosophies and fallacies in turbulence modeling , 2015 .

[26]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[27]  F. Nicoud,et al.  Using singular values to build a subgrid-scale model for large eddy simulations , 2011 .

[28]  Peter E. Hamlington,et al.  Direct Assessment of Vorticity Alignment with Local and Nonlocal Strain Rates in Turbulent Flows , 2008, 0810.3439.

[29]  Yi Li,et al.  A public turbulence database cluster and applications to study Lagrangian evolution of velocity increments in turbulence , 2008, 0804.1703.

[30]  T. Hughes,et al.  Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows , 2007 .

[31]  K. Jansen,et al.  On the interaction between dynamic model dissipation and numerical dissipation due to streamline upwind/Petrov–Galerkin stabilization , 2005 .

[32]  A. W. Vreman An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theory and applications , 2004 .

[33]  C. Meneveau,et al.  Decaying turbulence in an active-grid-generated flow and comparisons with large-eddy simulation , 2003, Journal of Fluid Mechanics.

[34]  F. Sarghini,et al.  Neural networks based subgrid scale modeling in large eddy simulations , 2003 .

[35]  Kenneth E. Jansen,et al.  Spatial test filters for dynamic model large‐eddy simulation with finite elements , 2002 .

[36]  N. Adams,et al.  An approximate deconvolution model for large-eddy simulation with application to incompressible wall-bounded flows , 2001 .

[37]  Kenneth E. Jansen,et al.  A stabilized finite element method for the incompressible Navier–Stokes equations using a hierarchical basis , 2001 .

[38]  P. Saugat Large eddy simulation for incompressible flows , 2001 .

[39]  G. Hulbert,et al.  A generalized-α method for integrating the filtered Navier–Stokes equations with a stabilized finite element method , 2000 .

[40]  R. Moser,et al.  Optimal LES formulations for isotropic turbulence , 1999, Journal of Fluid Mechanics.

[41]  F. Nicoud,et al.  Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor , 1999 .

[42]  Steven A. Orszag,et al.  Local energy flux and subgrid-scale statistics in three-dimensional turbulence , 1998, Journal of Fluid Mechanics.

[43]  K. Horiuti A new dynamic two-parameter mixed model for large-eddy simulation , 1997 .

[44]  M. Lesieur,et al.  Large-Eddy Simulations of Shear Flows , 1997 .

[45]  B. Geurts,et al.  Large-eddy simulation of the turbulent mixing layer , 1997, Journal of Fluid Mechanics.

[46]  Hans Kuerten,et al.  Large-eddy simulation of the temporal mixing layer using the Clark model , 1996 .

[47]  C. Meneveau,et al.  On the properties of similarity subgrid-scale models as deduced from measurements in a turbulent jet , 1994, Journal of Fluid Mechanics.

[48]  J. Koseff,et al.  A dynamic mixed subgrid‐scale model and its application to turbulent recirculating flows , 1993 .

[49]  P. Moin,et al.  A dynamic subgrid‐scale eddy viscosity model , 1990 .

[50]  Á. Aldama Filtering Techniques for Turbulent Flow Simulation , 1990 .

[51]  A. Kerstein,et al.  Alignment of vorticity and scalar gradient with strain rate in simulated Navier-Stokes turbulence , 1987 .

[52]  M. Germano Differential filters for the large eddy numerical simulation of turbulent flows , 1986 .

[53]  J. Ferziger,et al.  Improved subgrid-scale models for large-eddy simulation , 1980 .

[54]  J. Ferziger,et al.  Evaluation of subgrid-scale models using an accurately simulated turbulent flow , 1979, Journal of Fluid Mechanics.

[55]  S. Pope A more general effective-viscosity hypothesis , 1975, Journal of Fluid Mechanics.

[56]  S. Corrsin,et al.  Simple Eulerian time correlation of full-and narrow-band velocity signals in grid-generated, ‘isotropic’ turbulence , 1971, Journal of Fluid Mechanics.

[57]  J. Deardorff A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers , 1970, Journal of Fluid Mechanics.

[58]  S. Corrsin,et al.  The use of a contraction to improve the isotropy of grid-generated turbulence , 1966, Journal of Fluid Mechanics.

[59]  K. Lilly The representation of small-scale turbulence in numerical simulation experiments , 1966 .

[60]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .

[61]  A. N. Kolmogorov On the degeneration of isotropic turbulence in an incompressible viscous fluid , 1941 .