The WiggleZ Dark Energy Survey: mapping the distance-redshift relation with baryon acoustic oscillations

We present measurements of the baryon acoustic peak at redshifts z = 0.44, 0.6 and 0.73 in the galaxy correlation function of the final dataset of the WiggleZ Dark Energy Survey. We combine our correlation function with lower-redshift measurements from the 6-degree Field Galaxy Survey and Sloan Digital Sky Survey, producing a stacked survey correlation function in which the statistical significance of the detection of the baryon acoustic peak is 4.9-σ relative to a zero-baryon model with no peak. We fit cosmological models to this combined baryon acoustic oscillation (BAO) dataset comprising six distance-redshift data points, and compare the results to similar fits to the latest compilation of supernovae (SNe) and Cosmic Microwave Background (CMB) data. The BAO and SNe datasets produce consistent measurements of the equation-ofstate w of dark energy, when separately combined with the CMB, providing a powerful check for systematic errors in either of these distance probes. Combining all datasets we determine w = 1.03 ± 0.08 for a flat Universe, consistent with a cosmological constant model. Assuming dark energy is a cosmological constant and varying the spatial curvature, we find k = 0.004± 0.006.

[1]  Matthew Colless,et al.  The 6dF Galaxy Survey: baryon acoustic oscillations and the local Hubble constant , 2011, 1106.3366.

[2]  Scott Croom,et al.  The WiggleZ Dark Energy Survey: testing the cosmological model with baryon acoustic oscillations at z= 0.6 , 2011, 1105.2862.

[3]  Adam D. Myers,et al.  Ameliorating systematic uncertainties in the angular clustering of galaxies: a study using the SDSS-III , 2011, 1105.2320.

[4]  E. Kazin,et al.  Improving measurements of H(z) and DA(z) by analysing clustering anisotropies , 2011, 1105.2037.

[5]  M. Crocce,et al.  Clustering of photometric luminous red galaxies – I. Growth of structure and baryon acoustic feature , 2011, 1104.5236.

[6]  C. B. Netterfield,et al.  Planck early results - I. The Planck mission , 2011, 1101.2022.

[7]  R. Nichol,et al.  THE CLUSTERING OF MASSIVE GALAXIES AT z ∼ 0.5 FROM THE FIRST SEMESTER OF BOSS DATA , 2010, 1010.4915.

[8]  B. Hsieh,et al.  THE RED-SEQUENCE CLUSTER SURVEY-2 (RCS-2): SURVEY DETAILS AND PHOTOMETRIC CATALOG CONSTRUCTION , 2010, 1012.3470.

[9]  S. Saito,et al.  Baryon Acoustic Oscillations in 2D: Modeling Redshift-space Power Spectrum from Perturbation Theory , 2010, 1006.0699.

[10]  B. Bassett,et al.  Non-Gaussian Posteriors arising from Marginal Detections , 2010, 1005.1664.

[11]  M. Blanton,et al.  REGARDING THE LINE-OF-SIGHT BARYONIC ACOUSTIC FEATURE IN THE SLOAN DIGITAL SKY SURVEY AND BARYON OSCILLATION SPECTROSCOPIC SURVEY LUMINOUS RED GALAXY SAMPLES , 2010, 1004.2244.

[12]  M. S. Burns,et al.  SPECTRA AND HUBBLE SPACE TELESCOPE LIGHT CURVES OF SIX TYPE Ia SUPERNOVAE AT 0.511 < z < 1.12 AND THE UNION2 COMPILATION , 2010, 1004.1711.

[13]  Matthew Colless,et al.  The WiggleZ Dark Energy Survey: the selection function and z = 0.6 galaxy power spectrum , 2010, 1003.5721.

[14]  A. Szalay,et al.  THE BARYONIC ACOUSTIC FEATURE AND LARGE-SCALE CLUSTERING IN THE SLOAN DIGITAL SKY SURVEY LUMINOUS RED GALAXY SAMPLE , 2010 .

[15]  N. Yoshida,et al.  NON-GAUSSIAN ERROR CONTRIBUTION TO LIKELIHOOD ANALYSIS OF THE MATTER POWER SPECTRUM , 2009, 0912.1381.

[16]  Alexander S. Szalay,et al.  Baryon Acoustic Oscillations in the Sloan Digital Sky Survey Data Release 7 Galaxy Sample , 2009, 0907.1660.

[17]  Karl Glazebrook,et al.  The WiggleZ Dark Energy Survey: survey design and first data release , 2009, 0911.4246.

[18]  J. Vanderplas,et al.  FIRST-YEAR SLOAN DIGITAL SKY SURVEY-II SUPERNOVA RESULTS: HUBBLE DIAGRAM AND COSMOLOGICAL PARAMETERS , 2009, 0908.4274.

[19]  M. Wagner,et al.  AN INTENSIVE HUBBLE SPACE TELESCOPE SURVEY FOR z>1 TYPE Ia SUPERNOVAE BY TARGETING GALAXY CLUSTERS , 2009, 0908.3928.

[20]  A. Szalay,et al.  The Baryonic Acoustic Feature and Large-Scale Clustering in the SDSS LRG Sample , 2009, 0908.2598.

[21]  Ernest E. Croner,et al.  The Palomar Transient Factory: System Overview, Performance, and First Results , 2009, 0906.5350.

[22]  Martin White,et al.  Calibrating the baryon oscillation ruler for matter and halos , 2009, 0906.1198.

[23]  O. Lahav,et al.  The 6dF Galaxy Survey: final redshift release (DR3) and southern large-scale structures , 2009, 0903.5451.

[24]  Armin Rest,et al.  CfA3: 185 TYPE Ia SUPERNOVA LIGHT CURVES FROM THE CfA , 2009, 0901.4787.

[25]  Durham,et al.  Cosmological parameter constraints from SDSS luminous red galaxies: a new treatment of large-scale clustering , 2009, 0901.2570.

[26]  E. Komatsu,et al.  EXTRACTING ANGULAR DIAMETER DISTANCE AND EXPANSION RATE OF THE UNIVERSE FROM TWO-DIMENSIONAL GALAXY POWER SPECTRUM AT HIGH REDSHIFTS: BARYON ACOUSTIC OSCILLATION FITTING VERSUS FULL MODELING , 2008, 0805.4238.

[27]  Mamoru Doi,et al.  THE SLOAN DIGITAL SKY SURVEY-II: PHOTOMETRY AND SUPERNOVA IA LIGHT CURVES FROM THE 2005 DATA , 2008, 0908.4277.

[28]  T. Matsubara Nonlinear perturbation theory with halo bias and redshift-space distortions via the Lagrangian picture , 2008, 0807.1733.

[29]  D. Eisenstein,et al.  Non-linear Structure Formation and the Acoustic Scale , 2022 .

[30]  W. M. Wood-Vasey,et al.  Improved Cosmological Constraints from New, Old, and Combined Supernova Data Sets , 2008, 0804.4142.

[31]  N. Padmanabhan,et al.  Constraining anisotropic baryon oscillations , 2008, 0804.0799.

[32]  Durham,et al.  What is the best way to measure baryonic acoustic oscillations , 2008, 0804.0233.

[33]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[34]  R. Smith,et al.  Motion of the Acoustic Peak in the Correlation Function , 2007, astro-ph/0703620.

[35]  W. M. Wood-Vasey,et al.  SDSS-III: MASSIVE SPECTROSCOPIC SURVEYS OF THE DISTANT UNIVERSE, THE MILKY WAY, AND EXTRA-SOLAR PLANETARY SYSTEMS , 2011, 1101.1529.

[36]  W. M. Wood-Vasey,et al.  Observational Constraints on the Nature of Dark Energy: First Cosmological Results from the ESSENCE Supernova Survey , 2007, astro-ph/0701041.

[37]  Andrew J. Connolly,et al.  Measuring the Matter Density Using Baryon Oscillations in the SDSS , 2006, astro-ph/0608635.

[38]  O. Lahav,et al.  Cosmological baryonic and matter densities from 600 000 SDSS luminous red galaxies with photometric redshifts , 2006, astro-ph/0605303.

[39]  D. Eisenstein,et al.  On the Robustness of the Acoustic Scale in the Low-Redshift Clustering of Matter , 2006, astro-ph/0604361.

[40]  Stefano Casertano,et al.  New Hubble Space Telescope Discoveries of Type Ia Supernovae at z ≥ 1: Narrowing Constraints on the Early Behavior of Dark Energy , 2006, astro-ph/0611572.

[41]  Jr.,et al.  The Sloan Digital Sky Survey monitor telescope pipeline , 2006, astro-ph/0608575.

[42]  R. Nichol,et al.  The clustering of luminous red galaxies in the Sloan Digital Sky Survey imaging data , 2006, astro-ph/0605302.

[43]  Walter A. Siegmund,et al.  The 2.5 m Telescope of the Sloan Digital Sky Survey , 2006, astro-ph/0602326.

[44]  G. Huetsi Acoustic oscillations in the SDSS DR4 luminous red galaxy sample power spectrum , 2005, astro-ph/0512201.

[45]  Wendy L. Freedman,et al.  The Carnegie Supernova Project: The Low‐Redshift Survey , 2005, astro-ph/0512039.

[46]  R. Nichol,et al.  Universal fitting formulae for baryon oscillation surveys , 2005, astro-ph/0510239.

[47]  Warren R. Brown,et al.  UBVRI Light Curves of 44 Type Ia Supernovae , 2005, astro-ph/0509234.

[48]  C. Blake,et al.  Measuring the Cosmic Evolution of Dark Energy with Baryonic Oscillations in the Galaxy Power Spectrum , 2005, astro-ph/0505608.

[49]  A. Hamilton,et al.  Information content of the non-linear matter power spectrum , 2005, astro-ph/0502081.

[50]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological implications , 2005, astro-ph/0501174.

[51]  R. Nichol,et al.  Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies , 2005, astro-ph/0501171.

[52]  A. Szalay,et al.  The Galaxy Evolution Explorer: A Space Ultraviolet Survey Mission , 2004, astro-ph/0411302.

[53]  A. Szalay,et al.  SDSS data management and photometric quality assessment , 2004, astro-ph/0410195.

[54]  Will Saunders,et al.  AAOmega: a scientific and optical overview , 2004, SPIE Astronomical Telescopes + Instrumentation.

[55]  Stefano Casertano,et al.  Type Ia Supernova Discoveries at z > 1 from the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution , 2004, astro-ph/0402512.

[56]  D. Eisenstein,et al.  Probing Dark Energy with Baryonic Acoustic Oscillations from Future Large Galaxy Redshift Surveys , 2003, astro-ph/0307460.

[57]  Wayne Hu,et al.  Redshifting rings of power , 2003, astro-ph/0306053.

[58]  F. M. Maley,et al.  An Efficient Targeting Strategy for Multiobject Spectrograph Surveys: the Sloan Digital Sky Survey “Tiling” Algorithm , 2001, astro-ph/0105535.

[59]  D. Eisenstein Large-Scale Structure and Future Surveys , 2003, astro-ph/0301623.

[60]  C. Blake,et al.  SUBMITTED TO THE ASTROPHYSICAL JOURNAL: MARCH 17, 2003 Preprint typeset using L ATEX style emulateapj v. 26/01/00 OVER 5000 DISTANT EARLY-TYPE GALAXIES IN COMBO-17: A RED SEQUENCE AND ITS EVOLUTION SINCE Z ∼ 1 , 2003 .

[61]  Ž. Ivezić,et al.  Astrometric Calibration of the Sloan Digital Sky Survey , 2002, astro-ph/0211375.

[62]  E. Linder Exploring the expansion history of the universe. , 2002, Physical review letters.

[63]  J. Peacock,et al.  Stable clustering, the halo model and non-linear cosmological power spectra , 2002, astro-ph/0207664.

[64]  A. Melchiorri,et al.  Analytic marginalization over CMB calibration and beam uncertainty , 2002 .

[65]  V. Narayanan,et al.  Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Main Galaxy Sample , 2002, astro-ph/0206225.

[66]  M. SubbaRao,et al.  Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Quasar Sample , 2002, astro-ph/0202251.

[67]  D. Weinberg,et al.  The Halo Occupation Distribution: Toward an Empirical Determination of the Relation between Galaxies and Mass , 2001, astro-ph/0109001.

[68]  Arjun Dey,et al.  Next Generation Wide-Field Multi-Object Spectroscopy , 2002 .

[69]  John E. Davis,et al.  Sloan Digital Sky Survey: Early Data Release , 2002 .

[70]  V. Narayanan,et al.  Spectroscopic Target Selection for the Sloan Digital Sky Survey: The Luminous Red Galaxy Sample , 2001, astro-ph/0108153.

[71]  J. Gunn,et al.  A Photometricity and Extinction Monitor at the Apache Point Observatory , 2001, astro-ph/0106511.

[72]  F. Miller Maley,et al.  An Efficient Algorithm for Positioning Tiles in the Sloan Digital Sky Survey , 2001 .

[73]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: the power spectrum and the matter content of the Universe , 2001, astro-ph/0105252.

[74]  Asantha Cooray,et al.  Measuring Angular Diameter Distances through Halo Clustering , 2001, astro-ph/0105061.

[75]  P. Astier,et al.  Supernovae and the nature of the dark energy , 2001, astro-ph/0104009.

[76]  Christopher J. Miller,et al.  Possible Detection of Baryonic Fluctuations in the Large-Scale Structure Power Spectrum , 2001, astro-ph/0103018.

[77]  H. Payne,et al.  Astronomical Data Analysis Software and Systems X , 2001 .

[78]  M. Chevallier,et al.  ACCELERATING UNIVERSES WITH SCALING DARK MATTER , 2000, gr-qc/0009008.

[79]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[80]  M. Skrutskie,et al.  2MASS Extended Source Catalog: Overview and Algorithms , 2000, astro-ph/0004318.

[81]  A. Lewis,et al.  Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.

[82]  I. Hook,et al.  Measurements of Ω and Λ from 42 High-Redshift Supernovae , 1998, astro-ph/9812133.

[83]  et al,et al.  The Sloan Digital Sky Survey Photometric Camera , 1998, astro-ph/9809085.

[84]  A. Riess,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[85]  Wayne Hu,et al.  Baryonic Features in the Matter Transfer Function , 1997, astro-ph/9709112.

[86]  Max Tegmark Measuring Cosmological Parameters with Galaxy Surveys , 1997, astro-ph/9706198.

[87]  E. al.,et al.  BVRI Light Curves for 22 Type Ia Supernovae , 1996, astro-ph/9609064.

[88]  M. Fukugita,et al.  The Sloan Digital Sky Survey Photometric System , 1996 .

[89]  N. Sugiyama,et al.  Small-Scale Cosmological Perturbations: An Analytic Approach , 1995, astro-ph/9510117.

[90]  L. Krauss,et al.  The cosmological constant is back , 1995, astro-ph/9504003.

[91]  Paul J. Steinhardt,et al.  The observational case for a low-density Universe with a non-zero cosmological constant , 1995, Nature.

[92]  A. Szalay,et al.  Bias and variance of angular correlation functions , 1993 .

[93]  S. Maddox,et al.  The cosmological constant and cold dark matter , 1990, Nature.

[94]  J. Holtzman Microwave background anisotropies and large-scale structure in universes with cold dark matter, baryons, radiation, and massive and massless neutrinos , 1989 .

[95]  N. Kaiser Clustering in real space and in redshift space , 1987 .

[96]  A. Szalay,et al.  The statistics of peaks of Gaussian random fields , 1986 .

[97]  J. R. Bond,et al.  Cosmic background radiation anisotropies in universes dominated by nonbaryonic dark matter , 1984 .

[98]  P. Peebles,et al.  Primeval Adiabatic Perturbation in an Expanding Universe , 1970 .