Identifizierung ähnlicher Reaktionsmechanismen in homologen Enzymen unterschiedlicher Funktion unter Verwendung konservierter Sequenzdomänen

Enzyme sind auserordentlich effiziente Biokatalysatoren und beschleunigen als solche nahezu samtliche biochemischen Reaktionen in biologischen Systemen. Neue Enzyme entstehen nicht de novo, sondern entwickeln sich schrittweise durch Abwandlung der bereits vorhandenen Enzyme. Daher lassen sich die Reaktionen des Grundstoffwechsels der Zellen trotz ihrer Vielfalt auf relativ wenige Grundtypen zuruckfuhren. Diese Tatsache hat man teilweise bei der EC-Klassifikation der Enzyme berucksichtigt. Die Einordnung in EC-Klassen erfolgt jedoch im allgemeinen nicht aufgrund von gemeinsamer Abstammung oder ahnlichen Reaktionsmechanismen, sondern uberwiegend nach enzymologischen Kriterien wie der Wirkungs- und Substratspezifitat. Infolgedessen weisen Enzyme der gleichen EC-Klasse haufig keine strukturelle Ahnlichkeit zueinander auf, wodurch impliziert wird, das diese Enzyme eher durch Konvergenz als durch Divergenz entstanden sind, wahrend umgekehrt Enzyme gemeinsamen evolutionaren Ursprungs oftmals ganz unterschiedlichen EC-Klassen angehoren. Letzteres fuhrte zur Annahme, das Enzyme trotz gemeinsamer Abstammung ganz verschiedene Funktionen haben konnen. Es gibt jedoch Hinweise darauf, das diese Enzyme ahnliche Reaktionsmechanismen zur Realisierung der verschiedenen Funktionen verwenden. Wahrend die EC-Klassifikation alle an sie gestellten Anforderungen erfullt, besteht somit Bedarf fur ein alternatives, komplementares Klassifizierungssystem, das nicht auf einer empirischen Einteilung der beobachteten Reaktionen, sondern auf der evolutionaren Verwandtschaft der Enzyme beruht und infolgedessen Ruckschlusse auf die zugrundeliegenden Reaktionsmechanismen zulast. In der vorliegenden Dissertation wurde untersucht, ob eine auf Sequenzhomologie basierende Einteilung der Enzyme mit den von den Enzymen verwendeten Reaktionsmechanismen korreliert. Ziel war die systematische Clusterung und Analyse aller bekannten Enzymsequenzen zur Identifizierung von gemeinsamen oder ahnlichen Enzymmechanismen. Vorbedingung zur Bearbeitung des Problems war die Entwicklung einer Methode zur Identifizierung modular aufgebauter Proteinen, die aus mehreren, evolutionar oftmals unabhangigen Sequenzdomanen bestehen. Da solche modularen Enzyme in unterschiedlichen Bereichen Ahnlichkeit zu verschiedenen Enzymfamilien aufweisen konnen, implizieren sie haufig ein scheinbares, tatsachlich jedoch nicht vorhandenes gemeinsames Auftreten von Enzymaktivitaten in einem Sequenzcluster. Die Domanenstruktur wurde mittels der Lage und Ausdehnung lokaler Sequenzalignments ermittelt. Anschliesend wurden die so bestimmten Sequenzbereiche entsprechend ihrer Sequenzahnlichkeit zu Gruppen homologer Sequenzabschnitte zusammengefast. Hierzu wurde die Methode der Clusteranalyse verwendet. Die Analyse erfolgte bei verschiedenen Grenzwerten, um eine hierarchische Strukturierung des Sequenz-Raumes zu erhalten. Hierbei zeigte sich, das abhangig vom verwendeten Grenzwert bis zu 40% der generierten Sequenzcluster Enzyme verschiedener Enzymklassen, teilweise sogar verschiedener EC-Hauptklassen enthielten. Bei der Analyse zeigte sich jedoch, das in allen betrachteten Fallen trotz auf den ersten Blick unterschiedlicher Katalyse der Reaktionsmechanismus oder aber die Substratspezifitat dieser Reaktionen sehr ahnlich sind.

[1]  J. L. Smith Structures of glutamine amidotransferases from the purine biosynthetic pathway. , 1995, Biochemical Society transactions.

[2]  S. Altschul,et al.  Issues in searching molecular sequence databases , 1994, Nature Genetics.

[3]  Peer Bork,et al.  SMART: a web-based tool for the study of genetically mobile domains , 2000, Nucleic Acids Res..

[4]  W. O'Brien,et al.  Exploring the role of histidines in the catalytic activity of duck delta-crystallins using site-directed mutagenesis. , 1995, Experimental Eye Research.

[5]  S. Karlin,et al.  Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Y. Luo,et al.  Catalysis and binding in L-ribulose-5-phosphate 4-epimerase: a comparison with L-fuculose-1-phosphate aldolase. , 2001, Biochemistry.

[7]  Robert S. Ledley,et al.  The Protein Information Resource , 2003, Nucleic Acids Res..

[8]  H M Holden,et al.  Carbamoyl phosphate synthetase: caught in the act of glutamine hydrolysis. , 1998, Biochemistry.

[9]  D. Lipman,et al.  Improved tools for biological sequence comparison. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Terri K. Attwood,et al.  PRINTS and PRINTS-S shed light on protein ancestry , 2002, Nucleic Acids Res..

[11]  D T Jones,et al.  Classifying a protein in the CATH database of domain structures. , 1998, Acta crystallographica. Section D, Biological crystallography.

[12]  G. Böhm,et al.  Structural relationships of homologous proteins as a fundamental principle in homology modeling , 1993, Proteins.

[13]  R. Hill,et al.  19 Fumarase and Crotonase , 1971 .

[14]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[15]  R. Jensen Enzyme recruitment in evolution of new function. , 1976, Annual review of microbiology.

[16]  Martin Vingron,et al.  A set-theoretic approach to database searching and clustering , 1998, Bioinform..

[17]  D. Higgins,et al.  T-Coffee: A novel method for fast and accurate multiple sequence alignment. , 2000, Journal of molecular biology.

[18]  Y. Luo,et al.  The structure of L-ribulose-5-phosphate 4-epimerase: an aldolase-like platform for epimerization. , 2001, Biochemistry.

[19]  U. Lessel,et al.  Similarities between protein 3-D structures. , 1994, Protein engineering.

[20]  J. Dixon,et al.  Expression, purification, and kinetic characterization of recombinant human adenylosuccinate lyase. , 1993, The Journal of biological chemistry.

[21]  D. J. Porter,et al.  3-Carbanionic substrate analogues bind very tightly to fumarase and aspartase. , 1980, The Journal of biological chemistry.

[22]  G. Farber,et al.  The structure of L-aspartate ammonia-lyase from Escherichia coli. , 1997, Biochemistry.

[23]  D Fischer,et al.  Analysis of topological and nontopological structural similarities in the PDB: New examples with old structures , 1996, Proteins.

[24]  G. Schulz,et al.  Refined high-resolution structure of the metal-ion dependent L-fuculose-1-phosphate aldolase (class II) from Escherichia coli. , 1996, Acta crystallographica. Section D, Biological crystallography.

[25]  W E O'Brien,et al.  Expression of duck lens delta-crystallin cDNAs in yeast and bacterial hosts. Delta 2-crystallin is an active argininosuccinate lyase. , 1991, The Journal of biological chemistry.

[26]  M. Sinnott,et al.  Catalytic mechanism of enzymic glycosyl transfer , 1990 .

[27]  S. Henikoff,et al.  Amino acid substitution matrices from protein blocks. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[28]  P Bork,et al.  Evolutionarily mobile modules in proteins. , 1993, Scientific American.

[29]  J. S. Miles,et al.  Sequence homologies between argininosuccinase, aspartase and fumarase: A family of structurally-related enzymes , 1988 .

[30]  W E O'Brien,et al.  Gene sharing by delta-crystallin and argininosuccinate lyase. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[31]  C. Chothia,et al.  Evolution of the Protein Repertoire , 2003, Science.

[32]  P. Frey,et al.  Molecular structure of the NADH/UDP-glucose abortive complex of UDP-galactose 4-epimerase from Escherichia coli: implications for the catalytic mechanism. , 1996, Biochemistry.

[33]  Russell F. Doolittle,et al.  Reconstructing history with amino acid sequences 1 , 1992 .

[34]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[35]  Sandra Jeanne Vollmer,et al.  The glutamine-utilizing site of Bacillus subtilis glutamine phosphoribosylpyrophosphate amidotransferase. , 1983, The Journal of biological chemistry.

[36]  Amos Bairoch,et al.  The PROSITE database , 2005, Nucleic Acids Res..

[37]  P. R. Sibbald,et al.  The P-loop--a common motif in ATP- and GTP-binding proteins. , 1990, Trends in biochemical sciences.

[38]  L. Sampaleanu,et al.  Mutational analysis of duck delta 2 crystallin and the structure of an inactive mutant with bound substrate provide insight into the enzymatic mechanism of argininosuccinate lyase. , 2002, The Journal of biological chemistry.

[39]  P. Lindley,et al.  The structure of avian eye lens δ-crystallin reveals a new fold for a superfamily of oligomeric enzymes , 1994, Nature Structural Biology.

[40]  W. Pearson Effective protein sequence comparison. , 1996, Methods in enzymology.

[41]  J. L. Smith,et al.  Enzymes utilizing glutamine as an amide donor. , 1998, Advances in enzymology and related areas of molecular biology.

[42]  Shmuel Pietrokovski,et al.  The Blocks database--a system for protein classification , 1996, Nucleic Acids Res..

[43]  G. Schulz,et al.  Catalytic mechanism of the metal-dependent fuculose aldolase from Escherichia coli as derived from the structure. , 1996, Journal of molecular biology.

[44]  E. Koonin,et al.  The structure of the protein universe and genome evolution , 2002, Nature.

[45]  R. Viola,et al.  L-aspartase from Escherichia coli: substrate specificity and role of divalent metal ions. , 1988, Biochemistry.

[46]  J. Wootton,et al.  Analysis of compositionally biased regions in sequence databases. , 1996, Methods in enzymology.

[47]  P D Karp,et al.  What we do not know about sequence analysis and sequence databases. , 1998, Bioinformatics.

[48]  S. Colowick,et al.  On the mechanism of an anaerobic exchange reaction catalyzed by succinic dehydrogenase preparations. , 1955, The Journal of biological chemistry.

[49]  G. Schulz,et al.  Structure and mechanism of the amphibolic enzyme D-ribulose-5-phosphate 3-epimerase from potato chloroplasts. , 1999, Journal of molecular biology.

[50]  S. Withers,et al.  Mechanisms of enzymatic glycoside hydrolysis. , 1994, Current opinion in structural biology.

[51]  A. Lesk,et al.  The relation between the divergence of sequence and structure in proteins. , 1986, The EMBO journal.

[52]  I. A. Rose How fumarase recycles after the malate --> fumarate reaction. Insights into the reaction mechanism. , 1998, Biochemistry.

[53]  L. Glaser,et al.  On the mechanism of the pentose phosphate epimerases. , 1972, The Journal of biological chemistry.

[54]  Jérôme Gouzy,et al.  The ProDom database of protein domain families , 1998, Nucleic Acids Res..

[55]  Keith F. Tipton,et al.  History of the enzyme nomenclature system , 2000, Bioinform..

[56]  F. Hofmeister,et al.  Über Bau und Gruppierung der Eiweisskörper , 1902 .

[57]  Š. Janeček,et al.  Relationship of sequence and structure to specificity in the alpha-amylase family of enzymes. , 2001, Biochimica et biophysica acta.

[58]  G. Schulz,et al.  Structure and catalytic mechanism of L-rhamnulose-1-phosphate aldolase. , 2003, Biochemistry.

[59]  M S Waterman,et al.  Identification of common molecular subsequences. , 1981, Journal of molecular biology.

[60]  S. Altschul Amino acid substitution matrices from an information theoretic perspective , 1991, Journal of Molecular Biology.

[61]  T. P. Flores,et al.  Comparison of conformational characteristics in structurally similar protein pairs , 1993, Protein science : a publication of the Protein Society.

[62]  M. Sternberg,et al.  Two new examples of protein structural similarities within the structure-function twilight zone. , 1997, Protein engineering.

[63]  Patricia C. Babbitt,et al.  Understanding Enzyme Superfamilies , 1997, The Journal of Biological Chemistry.

[64]  C. Patterson Homology in classical and molecular biology. , 1988, Molecular biology and evolution.

[65]  A. Valencia,et al.  Practical limits of function prediction , 2000, Proteins.

[66]  B Rost,et al.  Pitfalls of protein sequence analysis. , 1996, Current opinion in biotechnology.

[67]  R. Doolittle Similar amino acid sequences: chance or common ancestry? , 1981, Science.

[68]  W. Rutter,et al.  EVOLUTION OF ALDOLASE. , 1964, Federation proceedings.

[69]  William R. Pearson,et al.  Identifying distantly related protein sequences. , 1997, Computer applications in the biosciences : CABIOS.

[70]  E. Heath,et al.  The metabolism of L-fucose. II. The enzymatic cleavage of L-fuculose 1-phosphate. , 1962, The Journal of biological chemistry.

[71]  P. Brick,et al.  Crystal structure of firefly luciferase throws light on a superfamily of adenylate-forming enzymes. , 1996, Structure.

[72]  R. Hill,et al.  The reaction of fumarase with iodoacetate and 4-bromocrotonate. , 1969, The Journal of biological chemistry.

[73]  C. Chothia,et al.  Intermediate sequences increase the detection of homology between sequences. , 1997, Journal of molecular biology.

[74]  G. Schulz,et al.  The spatial structure of the class II L-fuculose-1-phosphate aldolase from Escherichia coli. , 1993, Journal of molecular biology.

[75]  J. M. Buchanan The amidotransferases. , 1973, Advances in enzymology and related areas of molecular biology.

[76]  Nathan Linial,et al.  A Map of the Protein Space: An Automatic Hierarchical Classification of all Protein Sequences , 1998, ISMB.

[77]  A. Murzin,et al.  A protein catalytic framework with an N-terminal nucleophile is capable of self-activation , 1995, Nature.

[78]  Y. Takagi,et al.  THE METABOLISM OF L-RHAMNOSE IN ESCHERICHIA COLI. 3. L-RHAMULOSE-PHOSPHATE ALDOLASE. , 1964, Biochimica et biophysica acta.

[79]  W. Gilbert Why genes in pieces? , 1978, Nature.

[80]  P. Boyer,et al.  Initial and equilibrium 18O, 14C, 3H, and 2H exchange rates as probes of the fumarase reaction mechanism. , 1969, The Journal of biological chemistry.

[81]  A. Valencia,et al.  Intrinsic errors in genome annotation. , 2001, Trends in genetics : TIG.

[82]  S. Schuster,et al.  An alternative mechanism for the nitrogen transfer reaction in asparagine synthetase , 1992, FEBS letters.

[83]  L. Jou,et al.  Consensus sequences for ATP-binding sites in protein kinases do not apply to diacylglycerol kinases , 2005 .

[84]  S. B. Needleman,et al.  A general method applicable to the search for similarities in the amino acid sequence of two proteins. , 1970, Journal of molecular biology.

[85]  L. Sampaleanu,et al.  Three-dimensional structure of the argininosuccinate lyase frequently complementing allele Q286R. , 2001, Biochemistry.

[86]  C. Chothia,et al.  The evolution and structural anatomy of the small molecule metabolic pathways in Escherichia coli. , 2001, Journal of molecular biology.

[87]  S J Remington,et al.  The alpha/beta hydrolase fold. , 1992, Protein engineering.

[88]  John C. Wootton,et al.  Non-globular Domains in Protein Sequences: Automated Segmentation Using Complexity Measures , 1994, Comput. Chem..

[89]  B. Rost Twilight zone of protein sequence alignments. , 1999, Protein engineering.

[90]  C. Anfinsen,et al.  The kinetics of formation of native ribonuclease during oxidation of the reduced polypeptide chain. , 1961, Proceedings of the National Academy of Sciences of the United States of America.

[91]  Mark Gerstein,et al.  Measurement of the effectiveness of transitive sequence comparison, through a third 'intermediate' sequence , 1998, Bioinform..

[92]  E. Koonin,et al.  Protein sequence comparison at genome scale. , 1996, Methods in enzymology.

[93]  M. Saraste,et al.  Structure and function of the SH3 domain. , 1994, Progress in biophysics and molecular biology.

[94]  M. Tanner,et al.  Epimerization via carbon-carbon bond cleavage. L-ribulose-5-phosphate 4-epimerase as a masked class II aldolase. , 1998, Biochemistry.

[95]  C. Notredame,et al.  Tcoffee add igs: a web server for computing, evaluating and combining multiple sequence alignments , 2003, Nucleic Acids Res..

[96]  C. Chothia,et al.  Assessing sequence comparison methods with reliable structurally identified distant evolutionary relationships. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[97]  Georg E. Schulz,et al.  Catalytic Action of Fuculose 1-Phosphate Aldolase (Class II) as Derived from Structure-Directed Mutagenesis , 2000 .

[98]  V. Massey Studies on fumarase. II. The effects of inorganic anions on fumarase activity. , 1953, The Biochemical journal.

[99]  S. Altschul A protein alignment scoring system sensitive at all evolutionary distances , 1993, Journal of Molecular Evolution.

[100]  Martin Vingron,et al.  Large scale hierarchical clustering of protein sequences , 2005, BMC Bioinformatics.

[101]  C. Vance,et al.  Glutamate synthase and nitrogen assimilation , 1998 .

[102]  W. O'Brien,et al.  Argininosuccinate lyase: purification and characterization from human liver. , 1981, Biochemistry.

[103]  R. Mcinnes,et al.  Human argininosuccinate lyase: a structural basis for intragenic complementation. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[104]  Pedro M. Coutinho,et al.  Carbohydrate-active enzymes : an integrated database approach , 1999 .

[105]  D. Svergun,et al.  The active conformation of glutamate synthase and its binding to ferredoxin. , 2003, Journal of molecular biology.

[106]  Jaap Heringa,et al.  An analysis of protein domain linkers: their classification and role in protein folding. , 2002, Protein engineering.

[107]  J. Guest,et al.  Two biochemically distinct classes of fumarase in Escherichia coli. , 1988, Biochimica et biophysica acta.

[108]  Alexander Schliep,et al.  Clustering Protein Sequences ? Structure Prediction by Transitive Homology , 2001, German Conference on Bioinformatics.

[109]  Sean R. Eddy,et al.  Pfam: multiple sequence alignments and HMM-profiles of protein domains , 1998, Nucleic Acids Res..

[110]  P. Babbitt,et al.  3-Carboxy-cis,cis-muconate lactonizing enzyme from Pseudomonas putida is homologous to the class II fumarase family: a new reaction in the evolution of a mechanistic motif. , 1992, Biochemistry.

[111]  G. Chang,et al.  Biochemical characterization and kinetic analysis of duck delta-crystallin with endogenous argininosuccinate lyase activity. , 1992, The Biochemical journal.

[112]  B Henrissat,et al.  Structural and sequence-based classification of glycoside hydrolases. , 1997, Current opinion in structural biology.

[113]  Russell F. Doolittle,et al.  On the trail of protein sequences , 2000, Bioinform..

[114]  M. Abu-Abed,et al.  Structural comparison of the enzymatically active and inactive forms of delta crystallin and the role of histidine 91. , 1997, Biochemistry.

[115]  Andrea Mattevi,et al.  Structural studies on the synchronization of catalytic centers in glutamate synthase: reduced enzyme , 2002 .

[116]  Bani K. Mallick,et al.  Prediction of protein interdomain linker regions by a hidden Markov model , 2005, Bioinform..

[117]  W. Wood,et al.  L-Ribulose 5-phosphate 4-epimerase from Aerobacter aerogenes. Evidence for a role of divalent metal ions in the epimerization reaction. , 1972, The Journal of biological chemistry.

[118]  A. Meister,et al.  Isolation and properties of a new glutamine transaminase from rat kidney. , 1974, The Journal of biological chemistry.

[119]  P. W. Codding,et al.  Structural studies of duck delta2 crystallin mutants provide insight into the role of Thr161 and the 280s loop in catalysis. , 2004, The Biochemical journal.

[120]  R. Colman,et al.  Three subunits contribute amino acids to the active site of tetrameric adenylosuccinate lyase: Lys268 and Glu275 are required. , 2002, Biochemistry.

[121]  J. Coggins,et al.  The pentafunctional arom enzyme of Saccharomyces cerevisiae is a mosaic of monofunctional domains. , 1987, The Biochemical journal.

[122]  Ron D. Appel,et al.  ExPASy: the proteomics server for in-depth protein knowledge and analysis , 2003, Nucleic Acids Res..

[123]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[124]  S. Chiou,et al.  Biochemical characterization of crystallins from pigeon lenses: structural and sequence analysis of pigeon delta-crystallin. , 1992, Biochimica et biophysica acta.

[125]  Maria Jesus Martin,et al.  High-quality Protein Knowledge Resource: SWISS-PROT and TrEMBL , 2002, Briefings Bioinform..

[126]  C. Sander,et al.  Database of homology‐derived protein structures and the structural meaning of sequence alignment , 1991, Proteins.

[127]  Lawrence Hunter,et al.  Predicting Enzyme Function from Sequence: A Systematic Appraisal , 1997, ISMB.

[128]  D. Levitt,et al.  The multisubunit active site of fumarase C from Escherichia coli , 1995, Nature Structural Biology.

[129]  S. Brenner Errors in genome annotation. , 1999, Trends in genetics : TIG.

[130]  A G Murzin,et al.  SCOP: a structural classification of proteins database for the investigation of sequences and structures. , 1995, Journal of molecular biology.

[131]  Alexander Schliep,et al.  ProClust: improved clustering of protein sequences with an extended graph-based approach , 2002, ECCB.

[132]  Role of metal ions in the reaction catalyzed by L-ribulose-5-phosphate 4-epimerase. , 2000, Biochemistry.

[133]  E. Hamilton,et al.  The organization of the araBAD operon of Escherichia coli. , 1986, Gene.

[134]  J F Gibrat,et al.  Surprising similarities in structure comparison. , 1996, Current opinion in structural biology.

[135]  M. Badet-Denisot,et al.  The mechanism of glutamine-dependent amidotransferases , 1998, Cellular and Molecular Life Sciences CMLS.

[136]  David C. Jones,et al.  CATH--a hierarchic classification of protein domain structures. , 1997, Structure.

[137]  M. E. Tanner Understanding Nature′s Strategies for Enzyme‐Catalyzed Racemization and Epimerization , 2002 .

[138]  Michael Lappe,et al.  A fully automatic evolutionary classification of protein folds: Dali Domain Dictionary version 3 , 2001, Nucleic Acids Res..

[139]  M. Wolin,et al.  L-ribulose-5-phosphate -D-xylulose-5-phosphate stereoisomerase and its role in L-arabinose fermentation. , 1957, Biochimica et biophysica acta.