A selective blocker of Kv1.2 and Kv1.3 potassium channels from the venom of the scorpion Centruroides suffusus suffusus.

[1]  Su Qiu,et al.  Molecular basis of inhibitory peptide maurotoxin recognizing Kv1.2 channel explored by ZDOCK and molecular dynamic simulations , 2008, Proteins.

[2]  S. Wodak,et al.  Docking and scoring protein complexes: CAPRI 3rd Edition , 2007, Proteins.

[3]  Ben M. Webb,et al.  Comparative Protein Structure Modeling Using MODELLER , 2007, Current protocols in protein science.

[4]  Ruth Nussinov,et al.  FireDock: Fast interaction refinement in molecular docking , 2007, Proteins.

[5]  K. Henrick,et al.  Inference of macromolecular assemblies from crystalline state. , 2007, Journal of molecular biology.

[6]  Zhiping Weng,et al.  ZRANK: Reranking protein docking predictions with an optimized energy function , 2007, Proteins.

[7]  Yingliang Wu,et al.  Interaction simulation of hERG K+ channel with its specific BeKm-1 peptide: insights into the selectivity of molecular recognition. , 2007, Journal of proteome research.

[8]  Ben M. Webb,et al.  Comparative Protein Structure Modeling Using Modeller , 2006, Current protocols in bioinformatics.

[9]  Patrice Koehl,et al.  PDB_Hydro: incorporating dipolar solvents with variable density in the Poisson–Boltzmann treatment of macromolecule electrostatics , 2006, Nucleic Acids Res..

[10]  R. C. Rodríguez de la Vega,et al.  K+ channel blockers: novel tools to inhibit T cell activation leading to specific immunosuppression. , 2006, Current pharmaceutical design.

[11]  S. Grissmer,et al.  Pharmacological Profiling of Orthochirus scrobiculosus Toxin 1 Analogs with a Trimmed N-Terminal Domain , 2006, Molecular Pharmacology.

[12]  Juan A. Fernández,et al.  Novel alpha-KTx peptides from the venom of the scorpion Centruroides elegans selectively blockade Kv1.3 over IKCa1 K+ channels of T cells. , 2005, Toxicon : official journal of the International Society on Toxinology.

[13]  L. Possani,et al.  Anuroctoxin, a New Scorpion Toxin of the α-KTx 6 Subfamily, Is Highly Selective for Kv1.3 over IKCa1 Ion Channels of Human T Lymphocytes , 2005, Molecular Pharmacology.

[14]  S. Grissmer,et al.  K+ channel types targeted by synthetic OSK1, a toxin from Orthochirus scrobiculosus scorpion venom. , 2005, The Biochemical journal.

[15]  M. De Waard,et al.  Evidence for Domain-specific Recognition of SK and Kv Channels by MTX and HsTx1 Scorpion Toxins* , 2004, Journal of Biological Chemistry.

[16]  S. Grissmer,et al.  Mapping of Maurotoxin Binding Sites on hKv1.2, hKv1.3, and hIKCa1 Channels , 2004, Molecular Pharmacology.

[17]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[18]  K. Giangiacomo,et al.  Molecular basis of a-KTx specificity , 2004 .

[19]  E. Wanke,et al.  Proteomics of the venom from the Amazonian scorpion Tityus cambridgei and the role of prolines on mass spectrometry analysis of toxins. , 2004, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[20]  L. Possani,et al.  Phaiodactylipin, a glycosylated heterodimeric phospholipase A from the venom of the scorpion Anuroctonus phaiodactylus. , 2004, European journal of biochemistry.

[21]  Z. Varga,et al.  Ion channels and lymphocyte activation. , 2004, Immunology letters.

[22]  D. Surmeier,et al.  Kv1.2-containing K+ channels regulate subthreshold excitability of striatal medium spiny neurons. , 2004, Journal of neurophysiology.

[23]  M. Delepierre,et al.  The 'functional' dyad of scorpion toxin Pi1 is not itself a prerequisite for toxin binding to the voltage-gated Kv1.2 potassium channels. , 2004, The Biochemical journal.

[24]  G. Lippens,et al.  Cobatoxin 1 from Centruroides noxius scorpion venom: chemical synthesis, three-dimensional structure in solution, pharmacology and docking on K+ channels. , 2004, The Biochemical journal.

[25]  K. Chandy,et al.  Potassium channels as therapeutic targets for autoimmune disorders. , 2003, Current opinion in drug discovery & development.

[26]  M. Delepierre,et al.  Synthesis and characterization of Pi4, a scorpion toxin from Pandinus imperator that acts on K+ channels. , 2003, European journal of biochemistry.

[27]  I. Forsythe,et al.  Presynaptic Rat Kv1.2 Channels Suppress Synaptic Terminal Hyperexcitability Following Action Potential Invasion , 2003, The Journal of physiology.

[28]  Z. Weng,et al.  ZDOCK: An initial‐stage protein‐docking algorithm , 2003, Proteins.

[29]  R. C. Rodríguez de la Vega,et al.  Novel interactions between K+ channels and scorpion toxins. , 2003, Trends in pharmacological sciences.

[30]  T. Hoshi,et al.  Stimulatory action of internal protons on Slo1 BK channels. , 2003, Biophysical journal.

[31]  J. Trimmer,et al.  Distinct potassium channels on pain-sensing neurons , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[32]  T. Nagao,et al.  Novel peptides from assassin bugs (Hemiptera: Reduviidae): isolation, chemical and biological characterization , 2001, FEBS letters.

[33]  E. Horjales,et al.  Effects of Toxins Pi2 and Pi3 on Human T Lymphocyte Kv1.3 Channels: The Role of Glu7 and Lys24 , 2001, The Journal of Membrane Biology.

[34]  M. Péter,et al.  Blockage of human T lymphocyte Kv1.3 channels by Pi1, a novel class of scorpion toxin. , 2000, Biochemical and biophysical research communications.

[35]  K. Chandy,et al.  Structure-guided Transformation of Charybdotoxin Yields an Analog That Selectively Targets Ca2+-activated over Voltage-gated K+ Channels* , 2000, The Journal of Biological Chemistry.

[36]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[37]  G A Gutman,et al.  A unified nomenclature for short-chain peptides isolated from scorpion venoms: alpha-KTx molecular subfamilies. , 1999, Trends in pharmacological sciences.

[38]  J. Newcombe,et al.  Subunit Composition of Kv1 Channels in Human CNS , 1999, Journal of neurochemistry.

[39]  E. Christian,et al.  ShK-Dap22, a Potent Kv1.3-specific Immunosuppressive Polypeptide* , 1998, The Journal of Biological Chemistry.

[40]  A. Koschak,et al.  Subunit Composition of Brain Voltage-gated Potassium Channels Determined by Hongotoxin-1, a Novel Peptide Derived fromCentruroides limbatus Venom* , 1998, The Journal of Biological Chemistry.

[41]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[42]  C. Roumestand,et al.  On the Convergent Evolution of Animal Toxins , 1997, The Journal of Biological Chemistry.

[43]  M. Billeter,et al.  MOLMOL: a program for display and analysis of macromolecular structures. , 1996, Journal of molecular graphics.

[44]  C. Miller,et al.  The charybdotoxin family of K+ channel-blocking peptides , 1995, Neuron.

[45]  J M Thornton,et al.  LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. , 1995, Protein engineering.

[46]  G A Gutman,et al.  Pharmacological characterization of five cloned voltage-gated K+ channels, types Kv1.1, 1.2, 1.3, 1.5, and 3.1, stably expressed in mammalian cell lines. , 1994, Molecular pharmacology.

[47]  Christopher Miller,et al.  The charybdotoxin receptor of a Shaker K+ channel: Peptide and channel residues mediating molecular recognition , 1994, Neuron.

[48]  M. Bednarek,et al.  Chemical synthesis and structure-function studies of margatoxin, a potent inhibitor of voltage-dependent potassium channel in human T lymphocytes. , 1994, Biochemical and biophysical research communications.

[49]  M. Garcia-Calvo,et al.  Purification, characterization, and biosynthesis of margatoxin, a component of Centruroides margaritatus venom that selectively inhibits voltage-dependent potassium channels. , 1993, The Journal of biological chemistry.

[50]  J. Reuben,et al.  Selective blockers of voltage-gated K+ channels depolarize human T lymphocytes: mechanism of the antiproliferative effect of charybdotoxin. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[51]  Yuh Nung Jan,et al.  Evidence for the formation of heteromultimeric potassium channels in Xenopus oocytes , 1990, Nature.

[52]  C. Deutsch,et al.  Voltage‐gated potassium conductance in human T lymphocytes stimulated with phorbol ester. , 1986, The Journal of physiology.