Modified constitutive relation error: An identification framework dealing with the reliability of information

Abstract This paper proposes an identification strategy based on the principles of the Modified Constitutive Relation Error (M-CRE). The basic idea is to construct mechanical fields and material parameters that are a trade-off between all the available information but with no further hypothesis. The paper focuses on the identification of elastic properties from DIC (Digital Image Correlation) data in statics and the dealing of various kinds of boundary conditions (unknown or known) is especially discussed. We study our methodology on numerical examples in both homogeneous and heterogeneous isotropic elasticity, but a target application is the orthotopic behavior of aeronautic composites.

[1]  Pierre Ladevèze,et al.  Error Estimate Procedure in the Finite Element Method and Applications , 1983 .

[2]  Pierre Feissel,et al.  A robust identification strategy for rate-dependent models in dynamics , 2008 .

[3]  W. F. Ranson,et al.  Determination of displacements using an improved digital correlation method , 1983, Image Vis. Comput..

[4]  Pierre Ladevèze,et al.  Validation of structural dynamics models containing uncertainties , 2006 .

[5]  François Hild,et al.  Identification de modèles de comportement de matériaux solides : utilisation d'essais et de calculs , 2002 .

[6]  Pierre Ladevèze,et al.  Reduced bases for model updating in structural dynamics based on constitutive relation error , 2002 .

[7]  Pierre Villon,et al.  Robust identification of elastic properties using the Modified Constitutive Relation Error , 2015 .

[8]  K. Svanberg The method of moving asymptotes—a new method for structural optimization , 1987 .

[9]  Marc Bonnet,et al.  A Modified Error in Constitutive Equation Approach for Frequency-Domain Viscoelasticity Imaging Using Interior Data. , 2015, Computer methods in applied mechanics and engineering.

[10]  Olivier Allix,et al.  A delay damage mesomodel of laminates under dynamic loading: basic aspects and identification issues , 2003 .

[11]  François Hild,et al.  Identification of elastic parameters by displacement field measurement , 2002 .

[12]  Pierre Feissel,et al.  Modified constitutive relation error identification strategy for transient dynamics with corrupted data : the elastic case , 2007 .

[13]  Ulrich Tautenhahn,et al.  Morozov's Discrepancy Principle under General Source Conditions , 2003 .

[14]  Eric Florentin,et al.  Identification of the parameters of an elastic material model using the constitutive equation gap method , 2010 .

[15]  D. Shanno Conditioning of Quasi-Newton Methods for Function Minimization , 1970 .

[16]  J. D. Collins,et al.  Statistical Identification of Structures , 1973 .

[17]  Stéphane Roux,et al.  Identification of damage fields using kinematic measurements , 2002 .

[18]  F. Latourte IDENTIFICATION DES PARAMETRES D'UNE LOI ELASTOPLASTIQUE DE PRAGER ET CALCUL DE CHAMPS DE CONTRAINTE DANS DES MATERIAUX HETEROGENES , 2007 .

[19]  Marc Bonnet,et al.  Large Scale Parameter Estimation Problems in Frequency-Domain Elastodynamics Using an Error in Constitutive Equation Functional. , 2013, Computer methods in applied mechanics and engineering.

[20]  M. Bonnet,et al.  Overview of Identification Methods of Mechanical Parameters Based on Full-field Measurements , 2008 .

[21]  K. Miller Least Squares Methods for Ill-Posed Problems with a Prescribed Bound , 1970 .

[22]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.