A SiGe-BiCMOS Wideband (2–22 GHz) Active Power Divider/Combiner Circuit Supporting Bidirectional Operation

A power divider/combiner circuit, which simultaneously achieves wide bandwidth, flat gain characteristics, and bidirectional operation, is proposed for multichannel broadband system applications. The proposed circuit utilizes cascode-based bidirectional amplifier cores, which steer the operation modes between a divider and a combiner depending on the control input, and a two-stage distributed-amplifier topology with artificial transmission lines. Implemented in a 130-nm silicon-germanium BiCMOS technology platform, the proposed divider/combiner provides the advantage of seamless integration with digital control blocks. The power divider/combiner exhibits the flat in-band gain of 9 dB and the operational bandwidth of 2-22 GHz, which covers S-, C-, X-, and Ku-bands. In addition, it shows the amplitude imbalance of 0.8 dB, the phase imbalance of 3.5°, the port-to-port isolation of 22 dB, the output 1-dB compression point of 3 dBm, and good impedance matching under 100-mW dc power consumption.

[1]  Corrado Carta,et al.  220 GHz wideband distributed active power combiner , 2015, 2015 Asia-Pacific Microwave Conference (APMC).

[2]  Hong-Yeh Chang,et al.  A Broadband Inductorless Active Power Divider for 10 Gbps High Speed Transmissions , 2014, IEEE Microwave and Wireless Components Letters.

[3]  M. Riessle,et al.  Compact single-chip W-band FMCW radar modules for commercial high-resolution sensor applications , 2002 .

[4]  Ulrich H. Gysel,et al.  A New N-Way Power Divider/Combiner Suitable for High-Power Applications , 1975 .

[5]  P. Heydari,et al.  CMOS Distributed Active Power Combiners and Splitters for Multi-Antenna UWB Beamforming Transceivers , 2007, IEEE Journal of Solid-State Circuits.

[6]  R. Weigel,et al.  A 12-GHz High-Efficiency Tapered Traveling-Wave Power Amplifier With Novel Power Matched Cascode Gain Cells Using SiGe HBT Transistors , 2009, IEEE Transactions on Microwave Theory and Techniques.

[7]  Wei Hong,et al.  Design of a Q-Band Eight-Way Lumped Power Divider in 90 nm CMOS Technology , 2014, IEEE Microwave and Wireless Components Letters.

[8]  Jong-Sik Lim,et al.  A 800- to 3200-MHz Wideband CPW Balun Using Multistage Wilkinson Structure , 2006, 2006 IEEE MTT-S International Microwave Symposium Digest.

[9]  W. S. Chan,et al.  Broadband integrated active divider and combiner based on distributed amplification , 2008 .

[10]  E. J. Wilkinson An N-Way Hybrid Power Divider , 1960 .

[11]  Songcheol Hong,et al.  A Quadrature Radar Topology With Tx Leakage Canceller for 24-GHz Radar Applications , 2007, IEEE Transactions on Microwave Theory and Techniques.

[12]  Eran Socher,et al.  A SiGe Distributed Millimeter-Wave Frequency Tripler , 2014, IEEE Microwave and Wireless Components Letters.

[13]  S. Cohn A Class of Broadband Three-Port TEM-Mode Hybrids , 1968 .

[14]  Gabriel M. Rebeiz,et al.  A 90–100-GHz 4 $\times$ 4 SiGe BiCMOS Polarimetric Transmit/Receive Phased Array With Simultaneous Receive-Beams Capabilities , 2013, IEEE Transactions on Microwave Theory and Techniques.

[15]  Frank Ellinger,et al.  220–250-GHz Phased-Array Circuits in 0.13-$\mu{\hbox {m}}$ SiGe BiCMOS Technology , 2013, IEEE Transactions on Microwave Theory and Techniques.

[16]  Aziz Ouacha,et al.  Broadband bidirectional active MMIC power splitter and combiner for feed networks , 2001, APMC 2001. 2001 Asia-Pacific Microwave Conference (Cat. No.01TH8577).

[17]  Ping Chen,et al.  A novel distributed amplifier with high gain, low noise and high output power in 0.18-µm CMOS technology , 2011, 2011 IEEE MTT-S International Microwave Symposium.

[18]  Gabriel M. Rebeiz,et al.  A 30-40 GHz 1:16 Internally Matched SiGe Active Power Divider for Phased Array Transmitters , 2007, 2007 IEEE Custom Integrated Circuits Conference.

[19]  Huei Wang,et al.  A Novel Distributed Amplifier With High Gain, Low Noise, and High Output Power in ${\hbox{0.18-}} \mu{\hbox {m}}$ CMOS Technology , 2013, IEEE Transactions on Microwave Theory and Techniques.

[20]  John D. Cressler,et al.  A 2–22 GHz wideband active bi-directional power divider/combiner in 130 nm SiGe BiCMOS technology , 2016, 2016 IEEE MTT-S International Microwave Symposium (IMS).

[21]  Robert Hu,et al.  A DC-20GHz CMOS active power divider design , 2010, 2010 Asia-Pacific Microwave Conference.

[22]  S. Jeng,et al.  A 0.13 m BiCMOS technology featuring a 200/280 GHz (fT/fmax) SiGe HBT , 2003 .

[23]  Jeong-Geun Kim,et al.  A Switchless CMOS Bi-Directional Distributed Gain Amplifier With Multi-Octave Bandwidth , 2013, IEEE Microwave and Wireless Components Letters.

[24]  Fan Chen,et al.  Silicon-Germanium Heterojunction Bipolar Transistors , 2002 .

[25]  T. Tokumitsu,et al.  Active isolator, combiner, divider, and magic-T as miniaturized function blocks , 1988, 10th Annual IEEE (GaAs IC) Symposium, Gallium Arsenide Integrated Circuit. Technical Digest 1988..

[26]  Abdolali Abdipour,et al.  Theoretical Design of Broadband Multisection Wilkinson Power Dividers With Arbitrary Power Split Ratio , 2016, IEEE Transactions on Components, Packaging and Manufacturing Technology.

[27]  D. Harame,et al.  SILICON:GERMANIUM HETEROJUNCTION BIPOLAR TRANSISTORS: FROM EXPERIMENT TO TECHNOLOGY , 1994 .

[28]  James B. Beyer,et al.  MESFET Distributed Amplifier Design Guidelines , 1984 .

[29]  Franziska Hoffmann,et al.  Design Of Analog Cmos Integrated Circuits , 2016 .