Growth in groups: ideas and perspectives
暂无分享,去创建一个
[1] H. Helfgott. Growth and generation in $\mathrm{SL}_2(\mathbb{Z}/p \mathbb{Z})$ , 2008 .
[2] P. Diaconis,et al. Generating a random permutation with random transpositions , 1981 .
[3] J. Bourgain,et al. Uniform expansion bounds for Cayley graphs of SL2(Fp) , 2008 .
[4] László Lovász,et al. Random Walks on Graphs: A Survey , 1993 .
[5] K. F. Roth. On Certain Sets of Integers , 1953 .
[6] Avi Wigderson,et al. Extracting randomness using few independent sources , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.
[7] László Babai,et al. On the degree of transitivity of permutation groups: A short proof , 1987, J. Comb. Theory, Ser. A.
[8] Nikolay Nikolov,et al. Product decompositions of quasirandom groups and a Jordan type theorem , 2007, math/0703343.
[9] W. T. Gowers,et al. Quasirandom Groups , 2007, Combinatorics, Probability and Computing.
[10] Terence Tao,et al. A sum-product estimate in finite fields, and applications , 2003, math/0301343.
[11] B. Weisfeiler. Strong approximation for Zariski-dense subgroups of semi-simple algebraic groups , 1984 .
[12] László Babai,et al. On the diameter of Eulerian orientations of graphs , 2006, SODA '06.
[13] Gábor Hetyei,et al. On the Diameter of Random Cayley Graphs of the Symmetric Group , 1992, Combinatorics, Probability and Computing.
[14] S. Konyagin,et al. Additive properties of product sets in fields of prime order , 2007 .
[15] H. Helfgott,et al. On growth in an abstract plane , 2012, 1212.5056.
[16] László Babai,et al. Permutation groups in NC , 1987, STOC '87.
[17] Harry Kesten,et al. Symmetric random walks on groups , 1959 .
[18] Florian Martin,et al. Markov Operators on the Solvable Baumslag–Solitar Groups , 2000, Exp. Math..
[19] C. Roney-Dougal,et al. An explicit upper bound for the Helfgott delta in SL(2,p) , 2014, 1401.2863.
[20] Michael Larsen,et al. Finite subgroups of algebraic groups , 2011 .
[21] P. Diaconis,et al. Trailing the Dovetail Shuffle to its Lair , 1992 .
[22] M. Gromov. Groups of polynomial growth and expanding maps , 1981 .
[23] A. Pillay,et al. Definable subgroups of algebraic groups over finite fields. , 1995 .
[24] László Babai,et al. Small-diameter Cayley Graphs for Finite Simple Groups , 1989, Eur. J. Comb..
[25] W. T. Gowers,et al. A New Proof of Szemerédi's Theorem for Arithmetic Progressions of Length Four , 1998 .
[26] Giuliana P. Davidoff,et al. Elementary number theory, group theory, and Ramanujan graphs , 2003 .
[27] Ernie Croot,et al. A Probabilistic Technique for Finding Almost-Periods of Convolutions , 2010, 1003.2978.
[28] Ehud Hrushovski,et al. Stable group theory and approximate subgroups , 2009, 0909.2190.
[29] Robert Brooks,et al. The spectral geometry of a tower of coverings , 1986 .
[30] J. Wolf. Growth of finitely generated solvable groups and curvature of Riemannian manifolds , 1968 .
[31] Cheryl E. Praeger,et al. Graphs with automorphism groups admitting composition factors of bounded rank , 2012 .
[32] L. Pyber,et al. Growth in linear groups , 2012, 1208.2538.
[33] Pham Do Tuan,et al. On the estimation of Fourier coefficients. , 1969 .
[34] T. Sanders. On the Bogolyubov–Ruzsa lemma , 2010, 1011.0107.
[35] Ben Green,et al. Approximate Subgroups of Linear Groups , 2010, 1005.1881.
[36] James R. Driscoll,et al. Computing Short Generator Sequences , 1987, Inf. Comput..
[37] P. Varjú,et al. Expansion in perfect groups , 2011, 1108.4900.
[38] N. Katz,et al. Approximate multiplicative groups in nilpotent Lie groups , 2010 .
[39] Terence Tao. Product set estimates for non-commutative groups , 2008, Comb..
[40] Giorgis Petridis,et al. New proofs of Plünnecke-type estimates for product sets in groups , 2011, Comb..
[41] Noga Alon,et al. An Application of Graph Theory to Additive Number Theory , 1985, Eur. J. Comb..
[42] Nick Gill,et al. Growth of small generating sets in SL_n(Z/pZ) , 2010 .
[43] László Babai,et al. On the diameter of the symmetric group: polynomial bounds , 2004, SODA '04.
[44] Mark Jerrum,et al. Approximating the Permanent , 1989, SIAM J. Comput..
[45] Endre Szemerédi,et al. Extremal problems in discrete geometry , 1983, Comb..
[46] Bryna Kra,et al. Nonconventional ergodic averages and nilmanifolds , 2005 .
[47] G. Seitz,et al. On the minimal degrees of projective representations of the finite Chevalley groups , 1974 .
[48] Á. Seress. Permutation Group Algorithms , 2003 .
[49] V. I Danilov,et al. Algebraic curves, algebraic manifolds, and schemes , 1998 .
[50] H. A. Helfgott. Growth and generation in SL_2(Z/pZ) , 2005 .
[51] S. Lang,et al. NUMBER OF POINTS OF VARIETIES IN FINITE FIELDS. , 1954 .
[52] Vsevolod F. Lev,et al. Sum-free sets in abelian groups , 2001 .
[53] Oliver Lorscheid. Algebraic groups over the field with one element , 2009, 0907.3824.
[54] W. T. Gowers,et al. A NEW PROOF OF SZEMER ´ EDI'S THEOREM , 2001 .
[55] Martin Kassabov,et al. Symmetric groups and expander graphs , 2005 .
[56] W. T. Gowers,et al. A new proof of Szemerédi's theorem , 2001 .
[57] Imre Z. Ruzsa,et al. Arithmetic progressions in sumsets , 1991 .
[58] Paul G. Spirakis,et al. Coordinating Pebble Motion on Graphs, the Diameter of Permutation Groups, and Applications , 2015, FOCS.
[59] Tamar Ziegler,et al. Universal characteristic factors and Furstenberg averages , 2004, math/0403212.
[60] Elizabeth L. Wilmer,et al. Markov Chains and Mixing Times , 2008 .
[61] Ákos Seress,et al. On the diameter of permutation groups , 2014 .
[62] László Babai,et al. Product growth and mixing in finite groups , 2008, SODA '08.
[63] Andrei Z. Broder,et al. On the second eigenvalue of random regular graphs , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).
[64] László Babai. On the length of subgroup chains in the symmetric group , 1986 .
[65] Noga Alon,et al. lambda1, Isoperimetric inequalities for graphs, and superconcentrators , 1985, J. Comb. Theory, Ser. B.
[66] Jacques Tits,et al. Sur les analogues algébriques des groupes semi-simples complexes , 1957 .
[67] Jean Bourgain,et al. Expansion in SLd(Z/qZ), q arbitrary , 2010, 1006.3365.
[68] László Babai,et al. Bounds on the diameter of Cayley graphs of the symmetric group , 1988, Journal of Algebraic Combinatorics.
[69] J. Ellenberg,et al. Expander graphs, gonality, and variation of Galois representations , 2010, 1008.3675.
[70] Ben Green,et al. Sum-free sets in abelian groups , 2003 .
[71] Hyman Bass,et al. The Degree of Polynomial Growth of Finitely Generated Nilpotent Groups , 1972 .
[72] Benjamin Weiss,et al. Groups and Expanders , 1992, Expanding Graphs.
[73] Imre Z. Ruzsa,et al. Generalized arithmetical progressions and sumsets , 1994 .
[74] Noga Alon,et al. The Probabilistic Method, Second Edition , 2004 .
[75] László Babai,et al. On the order of doubly transitive permutation groups , 1982 .
[76] Jean Bourgain,et al. On the spectral gap for finitely-generated subgroups of SU(2) , 2007 .
[77] T. Tao,et al. The primes contain arbitrarily long arithmetic progressions , 2004, math/0404188.
[78] T. Tao,et al. Expansion in finite simple groups of Lie type , 2013, 1309.1975.
[79] Peter Sarnak,et al. Bounds for multiplicities of automorphic representations , 1991 .
[80] E. Szemerédi. On sets of integers containing k elements in arithmetic progression , 1975 .
[81] B. Green,et al. Approximate groups. I The torsion-free nilpotent case , 2009, Journal of the Institute of Mathematics of Jussieu.
[82] P. Buser. Cubic graphs and the first eigenvalue of a Riemann surface , 1978 .
[83] Helmut Plünnecke,et al. Eine zahlentheoretische Anwendung der Graphentheorie. , 1970 .
[84] Jean Bourgain,et al. Estimates for the Number of Sums and Products and for Exponential Sums in Fields of Prime Order , 2006 .
[85] József Solymosi,et al. Bounding multiplicative energy by the sumset , 2009 .
[86] I. Chuang,et al. Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .
[87] Anand Pillay,et al. Model theory with applications to algebra and analysis , 2008 .
[88] C. Sims. Computational methods in the study of permutation groups , 1970 .
[89] Ben Green,et al. The structure of approximate groups , 2011, Publications mathématiques de l'IHÉS.
[90] Mehrdad Shahshahani,et al. Uniform diameter bounds for some families of Cayley graphs , 2004 .
[91] Alan Williamson,et al. The Probability of Generating the Symmetric Group , 1978 .
[92] A. Sokal,et al. Bounds on the ² spectrum for Markov chains and Markov processes: a generalization of Cheeger’s inequality , 1988 .
[93] P. Spiga,et al. Two local conditions on the vertex stabiliser of arc-transitive graphs and their effect on the Sylow subgroups , 2011, 1102.4421.
[94] Pierre McKenzie,et al. Permutations of Bounded Degree Generate Groups of Polynomial Diameter , 1984, Inf. Process. Lett..
[95] B. Green,et al. APPROXIMATE GROUPS, II: THE SOLVABLE LINEAR CASE , 2009, 0907.0927.
[96] E. Kowalski. Sieve in expansion , 2010, 1012.2793.
[97] R. Brooks. On the angles between certain arithmetically defined subspaces of ${\bf C}^n$ , 1987 .
[98] Mei-Chu Chang. A polynomial bound in Freiman's theorem , 2002 .
[99] L. N. Vaserstein,et al. Congruence Properties of Zariski‐Dense Subgroups I , 1984 .
[100] H. Helfgott,et al. Growth in solvable subgroups of $${{\mathrm{GL}}}_r({\mathbb {Z}}/p{\mathbb {Z}})$$GLr(Z/pZ) , 2014 .
[101] Yehuda Shalom,et al. Expander Graphs and Amenable Quotients , 1999 .
[103] Madhav V. Nori,et al. On subgroups ofGLn(Fp) , 1987 .
[104] Andrzej Zuk,et al. Random generators of the symmetric group: diameter, mixing time and spectral gap , 2013, 1311.6742.
[105] Yehuda Shalom,et al. Expanding graphs and invariant means , 1997, Comb..
[106] M. Larsen. Navigating the Cayley graph of SL(2,Z/pZ) , 2003, math/0301147.
[107] G. Freiman. Foundations of a Structural Theory of Set Addition , 2007 .
[108] On higher order Fourier analysis , 2012, 1203.2260.
[109] Endre Szemerédi,et al. On sums and products of integers , 1983 .
[110] B. Green,et al. Approximate groups, III: the unitary case , 2010, 1006.5160.
[111] P. Diaconis,et al. Comparison Techniques for Random Walk on Finite Groups , 1993 .
[112] O. H. Lowry. Academic press. , 1972, Analytical chemistry.
[113] László Pyber,et al. On the Orders of Doubly Transitive Permutation Groups, Elementary Estimates , 1993, J. Comb. Theory, Ser. A.
[114] P. Sarnak,et al. Affine linear sieve, expanders, and sum-product , 2010 .
[115] Charles C. Sims,et al. Computation with permutation groups , 1971, SYMSAC '71.
[116] Gerald A. Edgar,et al. Borel subrings of the reals , 2002 .
[117] E. Kowalski. Explicit growth and expansion for SL_2 , 2012, 1201.1139.
[118] Benny Sudakov,et al. On a question of Erdős and Moser , 2005 .
[119] S. A. Sherman,et al. Providence , 1906 .
[120] P. Varjú. Random walks in compact groups , 2012, Documenta Mathematica.
[121] Yong-Gao Chen,et al. On sums and products of integers , 1999 .
[122] Alex Gamburd,et al. On the spectral gap for infinite index “congruence” subgroups of SL2(Z) , 2002 .
[123] J. Müller,et al. Group Theory , 2019, Computers, Rigidity, and Moduli.
[124] József Solymosi,et al. On the Number of Sums and Products , 2005 .
[125] H. Helfgott,et al. Growth in solvable subgroups of GL r (Z/ p Z) , 2010, 1008.5264.
[126] Gonzalo Fiz Pontiveros. Sums of Dilates in p , 2012, Combinatorics, Probability and Computing.
[127] P. Sarnak,et al. Generalization of Selberg’s $$ \frac{3}{{16}} $$ theorem and affine sieve , 2011 .
[128] Terence Tao,et al. Freiman's theorem for solvable groups , 2009, Contributions Discret. Math..
[129] Noga Alon,et al. The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.
[130] E. Szemeri~di,et al. On Sets of Integers Containing No Four Elements in Arithmetic Progression , .
[131] Thomas P. Hayes,et al. Near-independence of permutations and an almost sure polynomial bound on the diameter of the symmetric group , 2005, SODA '05.
[132] Endre Szemerédi,et al. A statistical theorem of set addition , 1994, Comb..
[133] H. A. Helfgott,et al. Growth in SL_3(Z/pZ) , 2008, 0807.2027.
[134] Jan-Christoph Schlage-Puchta,et al. Applications of character estimates to statistical problems for the symmetric group , 2012, Comb..
[135] On uniform exponential growth for linear groups , 2001, math/0108157.
[136] Ehud Hrushovski,et al. Model Theory with Applications to Algebra and Analysis: Counting and dimensions , 2008 .
[137] Mei-Chu Chang. PRODUCT THEOREMS IN SL2 AND SL3 , 2006, Journal of the Institute of Mathematics of Jussieu.
[138] J. Bourgain,et al. Expansion and random walks in SL_d(Z/p^n Z): II , 2008 .
[139] Oren Dinai. Poly-log diameter bounds for some families of finite groups , 2006 .
[140] John D. Lafferty,et al. Fast Fourier Analysis for SL2 over a Finite Field and Related Numerical Experiments , 1992, Exp. Math..
[141] G. A. Margulis,et al. Explicit constructions of graphs without short cycles and low density codes , 1982, Comb..
[142] Oren Dinai. Growth in SL2 over finite fields , 2010 .
[143] J. Milnor. Growth of finitely generated solvable groups , 1968 .
[144] J. Dixon,et al. Permutation Groups , 1996 .
[145] H. Wielandt,et al. Finite Permutation Groups , 1964 .
[146] H. Furstenberg. Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions , 1977 .
[147] G. A. Soifer,et al. Free Subgroups of Linear Groups , 2007 .
[148] Alexander Lubotzky,et al. Expander graphs in pure and applied mathematics , 2011, 1105.2389.
[149] P. P. Varj'u. Expansion in $SL_d(O_K/I)$, $I$ square-free , 2010, 1001.3664.
[150] A. Razborov. A product theorem in free groups , 2014 .
[151] Zoltán Király,et al. On the Combinatorics of Projective Mappings , 2001 .
[152] J. Dodziuk. Difference equations, isoperimetric inequality and transience of certain random walks , 1984 .
[153] Matthew C. H. Tointon. Freiman's theorem in an arbitrary nilpotent group , 2012, 1211.3989.
[154] Imre Z. Ruzsa,et al. An analog of Freiman's theorem in groups , 1993 .
[155] T. A. Springer. Conjugacy classes in algebraic groups , 1986 .
[156] Y. Guivarc’h. Croissance polynomiale et périodes des fonctions harmoniques , 1973 .
[157] Emmanuel Breuillard,et al. Strong Uniform Expansion in SL(2, p) , 2010 .