Growth in groups: ideas and perspectives

This is a survey of methods developed in the last few years to prove results on growth in non-commutative groups. These techniques have their roots in both additive combinatorics and group theory, as well as other fields. We discuss linear algebraic groups, with SL_2(Z/pZ) as the basic example, as well as permutation groups. The emphasis lies on the ideas behind the methods.

[1]  H. Helfgott Growth and generation in $\mathrm{SL}_2(\mathbb{Z}/p \mathbb{Z})$ , 2008 .

[2]  P. Diaconis,et al.  Generating a random permutation with random transpositions , 1981 .

[3]  J. Bourgain,et al.  Uniform expansion bounds for Cayley graphs of SL2(Fp) , 2008 .

[4]  László Lovász,et al.  Random Walks on Graphs: A Survey , 1993 .

[5]  K. F. Roth On Certain Sets of Integers , 1953 .

[6]  Avi Wigderson,et al.  Extracting randomness using few independent sources , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[7]  László Babai,et al.  On the degree of transitivity of permutation groups: A short proof , 1987, J. Comb. Theory, Ser. A.

[8]  Nikolay Nikolov,et al.  Product decompositions of quasirandom groups and a Jordan type theorem , 2007, math/0703343.

[9]  W. T. Gowers,et al.  Quasirandom Groups , 2007, Combinatorics, Probability and Computing.

[10]  Terence Tao,et al.  A sum-product estimate in finite fields, and applications , 2003, math/0301343.

[11]  B. Weisfeiler Strong approximation for Zariski-dense subgroups of semi-simple algebraic groups , 1984 .

[12]  László Babai,et al.  On the diameter of Eulerian orientations of graphs , 2006, SODA '06.

[13]  Gábor Hetyei,et al.  On the Diameter of Random Cayley Graphs of the Symmetric Group , 1992, Combinatorics, Probability and Computing.

[14]  S. Konyagin,et al.  Additive properties of product sets in fields of prime order , 2007 .

[15]  H. Helfgott,et al.  On growth in an abstract plane , 2012, 1212.5056.

[16]  László Babai,et al.  Permutation groups in NC , 1987, STOC '87.

[17]  Harry Kesten,et al.  Symmetric random walks on groups , 1959 .

[18]  Florian Martin,et al.  Markov Operators on the Solvable Baumslag–Solitar Groups , 2000, Exp. Math..

[19]  C. Roney-Dougal,et al.  An explicit upper bound for the Helfgott delta in SL(2,p) , 2014, 1401.2863.

[20]  Michael Larsen,et al.  Finite subgroups of algebraic groups , 2011 .

[21]  P. Diaconis,et al.  Trailing the Dovetail Shuffle to its Lair , 1992 .

[22]  M. Gromov Groups of polynomial growth and expanding maps , 1981 .

[23]  A. Pillay,et al.  Definable subgroups of algebraic groups over finite fields. , 1995 .

[24]  László Babai,et al.  Small-diameter Cayley Graphs for Finite Simple Groups , 1989, Eur. J. Comb..

[25]  W. T. Gowers,et al.  A New Proof of Szemerédi's Theorem for Arithmetic Progressions of Length Four , 1998 .

[26]  Giuliana P. Davidoff,et al.  Elementary number theory, group theory, and Ramanujan graphs , 2003 .

[27]  Ernie Croot,et al.  A Probabilistic Technique for Finding Almost-Periods of Convolutions , 2010, 1003.2978.

[28]  Ehud Hrushovski,et al.  Stable group theory and approximate subgroups , 2009, 0909.2190.

[29]  Robert Brooks,et al.  The spectral geometry of a tower of coverings , 1986 .

[30]  J. Wolf Growth of finitely generated solvable groups and curvature of Riemannian manifolds , 1968 .

[31]  Cheryl E. Praeger,et al.  Graphs with automorphism groups admitting composition factors of bounded rank , 2012 .

[32]  L. Pyber,et al.  Growth in linear groups , 2012, 1208.2538.

[33]  Pham Do Tuan,et al.  On the estimation of Fourier coefficients. , 1969 .

[34]  T. Sanders On the Bogolyubov–Ruzsa lemma , 2010, 1011.0107.

[35]  Ben Green,et al.  Approximate Subgroups of Linear Groups , 2010, 1005.1881.

[36]  James R. Driscoll,et al.  Computing Short Generator Sequences , 1987, Inf. Comput..

[37]  P. Varjú,et al.  Expansion in perfect groups , 2011, 1108.4900.

[38]  N. Katz,et al.  Approximate multiplicative groups in nilpotent Lie groups , 2010 .

[39]  Terence Tao Product set estimates for non-commutative groups , 2008, Comb..

[40]  Giorgis Petridis,et al.  New proofs of Plünnecke-type estimates for product sets in groups , 2011, Comb..

[41]  Noga Alon,et al.  An Application of Graph Theory to Additive Number Theory , 1985, Eur. J. Comb..

[42]  Nick Gill,et al.  Growth of small generating sets in SL_n(Z/pZ) , 2010 .

[43]  László Babai,et al.  On the diameter of the symmetric group: polynomial bounds , 2004, SODA '04.

[44]  Mark Jerrum,et al.  Approximating the Permanent , 1989, SIAM J. Comput..

[45]  Endre Szemerédi,et al.  Extremal problems in discrete geometry , 1983, Comb..

[46]  Bryna Kra,et al.  Nonconventional ergodic averages and nilmanifolds , 2005 .

[47]  G. Seitz,et al.  On the minimal degrees of projective representations of the finite Chevalley groups , 1974 .

[48]  Á. Seress Permutation Group Algorithms , 2003 .

[49]  V. I Danilov,et al.  Algebraic curves, algebraic manifolds, and schemes , 1998 .

[50]  H. A. Helfgott Growth and generation in SL_2(Z/pZ) , 2005 .

[51]  S. Lang,et al.  NUMBER OF POINTS OF VARIETIES IN FINITE FIELDS. , 1954 .

[52]  Vsevolod F. Lev,et al.  Sum-free sets in abelian groups , 2001 .

[53]  Oliver Lorscheid Algebraic groups over the field with one element , 2009, 0907.3824.

[54]  W. T. Gowers,et al.  A NEW PROOF OF SZEMER ´ EDI'S THEOREM , 2001 .

[55]  Martin Kassabov,et al.  Symmetric groups and expander graphs , 2005 .

[56]  W. T. Gowers,et al.  A new proof of Szemerédi's theorem , 2001 .

[57]  Imre Z. Ruzsa,et al.  Arithmetic progressions in sumsets , 1991 .

[58]  Paul G. Spirakis,et al.  Coordinating Pebble Motion on Graphs, the Diameter of Permutation Groups, and Applications , 2015, FOCS.

[59]  Tamar Ziegler,et al.  Universal characteristic factors and Furstenberg averages , 2004, math/0403212.

[60]  Elizabeth L. Wilmer,et al.  Markov Chains and Mixing Times , 2008 .

[61]  Ákos Seress,et al.  On the diameter of permutation groups , 2014 .

[62]  László Babai,et al.  Product growth and mixing in finite groups , 2008, SODA '08.

[63]  Andrei Z. Broder,et al.  On the second eigenvalue of random regular graphs , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[64]  László Babai On the length of subgroup chains in the symmetric group , 1986 .

[65]  Noga Alon,et al.  lambda1, Isoperimetric inequalities for graphs, and superconcentrators , 1985, J. Comb. Theory, Ser. B.

[66]  Jacques Tits,et al.  Sur les analogues algébriques des groupes semi-simples complexes , 1957 .

[67]  Jean Bourgain,et al.  Expansion in SLd(Z/qZ), q arbitrary , 2010, 1006.3365.

[68]  László Babai,et al.  Bounds on the diameter of Cayley graphs of the symmetric group , 1988, Journal of Algebraic Combinatorics.

[69]  J. Ellenberg,et al.  Expander graphs, gonality, and variation of Galois representations , 2010, 1008.3675.

[70]  Ben Green,et al.  Sum-free sets in abelian groups , 2003 .

[71]  Hyman Bass,et al.  The Degree of Polynomial Growth of Finitely Generated Nilpotent Groups , 1972 .

[72]  Benjamin Weiss,et al.  Groups and Expanders , 1992, Expanding Graphs.

[73]  Imre Z. Ruzsa,et al.  Generalized arithmetical progressions and sumsets , 1994 .

[74]  Noga Alon,et al.  The Probabilistic Method, Second Edition , 2004 .

[75]  László Babai,et al.  On the order of doubly transitive permutation groups , 1982 .

[76]  Jean Bourgain,et al.  On the spectral gap for finitely-generated subgroups of SU(2) , 2007 .

[77]  T. Tao,et al.  The primes contain arbitrarily long arithmetic progressions , 2004, math/0404188.

[78]  T. Tao,et al.  Expansion in finite simple groups of Lie type , 2013, 1309.1975.

[79]  Peter Sarnak,et al.  Bounds for multiplicities of automorphic representations , 1991 .

[80]  E. Szemerédi On sets of integers containing k elements in arithmetic progression , 1975 .

[81]  B. Green,et al.  Approximate groups. I The torsion-free nilpotent case , 2009, Journal of the Institute of Mathematics of Jussieu.

[82]  P. Buser Cubic graphs and the first eigenvalue of a Riemann surface , 1978 .

[83]  Helmut Plünnecke,et al.  Eine zahlentheoretische Anwendung der Graphentheorie. , 1970 .

[84]  Jean Bourgain,et al.  Estimates for the Number of Sums and Products and for Exponential Sums in Fields of Prime Order , 2006 .

[85]  József Solymosi,et al.  Bounding multiplicative energy by the sumset , 2009 .

[86]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[87]  Anand Pillay,et al.  Model theory with applications to algebra and analysis , 2008 .

[88]  C. Sims Computational methods in the study of permutation groups , 1970 .

[89]  Ben Green,et al.  The structure of approximate groups , 2011, Publications mathématiques de l'IHÉS.

[90]  Mehrdad Shahshahani,et al.  Uniform diameter bounds for some families of Cayley graphs , 2004 .

[91]  Alan Williamson,et al.  The Probability of Generating the Symmetric Group , 1978 .

[92]  A. Sokal,et al.  Bounds on the ² spectrum for Markov chains and Markov processes: a generalization of Cheeger’s inequality , 1988 .

[93]  P. Spiga,et al.  Two local conditions on the vertex stabiliser of arc-transitive graphs and their effect on the Sylow subgroups , 2011, 1102.4421.

[94]  Pierre McKenzie,et al.  Permutations of Bounded Degree Generate Groups of Polynomial Diameter , 1984, Inf. Process. Lett..

[95]  B. Green,et al.  APPROXIMATE GROUPS, II: THE SOLVABLE LINEAR CASE , 2009, 0907.0927.

[96]  E. Kowalski Sieve in expansion , 2010, 1012.2793.

[97]  R. Brooks On the angles between certain arithmetically defined subspaces of ${\bf C}^n$ , 1987 .

[98]  Mei-Chu Chang A polynomial bound in Freiman's theorem , 2002 .

[99]  L. N. Vaserstein,et al.  Congruence Properties of Zariski‐Dense Subgroups I , 1984 .

[100]  H. Helfgott,et al.  Growth in solvable subgroups of $${{\mathrm{GL}}}_r({\mathbb {Z}}/p{\mathbb {Z}})$$GLr(Z/pZ) , 2014 .

[101]  Yehuda Shalom,et al.  Expander Graphs and Amenable Quotients , 1999 .

[103]  Madhav V. Nori,et al.  On subgroups ofGLn(Fp) , 1987 .

[104]  Andrzej Zuk,et al.  Random generators of the symmetric group: diameter, mixing time and spectral gap , 2013, 1311.6742.

[105]  Yehuda Shalom,et al.  Expanding graphs and invariant means , 1997, Comb..

[106]  M. Larsen Navigating the Cayley graph of SL(2,Z/pZ) , 2003, math/0301147.

[107]  G. Freiman Foundations of a Structural Theory of Set Addition , 2007 .

[108]  On higher order Fourier analysis , 2012, 1203.2260.

[109]  Endre Szemerédi,et al.  On sums and products of integers , 1983 .

[110]  B. Green,et al.  Approximate groups, III: the unitary case , 2010, 1006.5160.

[111]  P. Diaconis,et al.  Comparison Techniques for Random Walk on Finite Groups , 1993 .

[112]  O. H. Lowry Academic press. , 1972, Analytical chemistry.

[113]  László Pyber,et al.  On the Orders of Doubly Transitive Permutation Groups, Elementary Estimates , 1993, J. Comb. Theory, Ser. A.

[114]  P. Sarnak,et al.  Affine linear sieve, expanders, and sum-product , 2010 .

[115]  Charles C. Sims,et al.  Computation with permutation groups , 1971, SYMSAC '71.

[116]  Gerald A. Edgar,et al.  Borel subrings of the reals , 2002 .

[117]  E. Kowalski Explicit growth and expansion for SL_2 , 2012, 1201.1139.

[118]  Benny Sudakov,et al.  On a question of Erdős and Moser , 2005 .

[119]  S. A. Sherman,et al.  Providence , 1906 .

[120]  P. Varjú Random walks in compact groups , 2012, Documenta Mathematica.

[121]  Yong-Gao Chen,et al.  On sums and products of integers , 1999 .

[122]  Alex Gamburd,et al.  On the spectral gap for infinite index “congruence” subgroups of SL2(Z) , 2002 .

[123]  J. Müller,et al.  Group Theory , 2019, Computers, Rigidity, and Moduli.

[124]  József Solymosi,et al.  On the Number of Sums and Products , 2005 .

[125]  H. Helfgott,et al.  Growth in solvable subgroups of GL r (Z/ p Z) , 2010, 1008.5264.

[126]  Gonzalo Fiz Pontiveros Sums of Dilates in p , 2012, Combinatorics, Probability and Computing.

[127]  P. Sarnak,et al.  Generalization of Selberg’s $$ \frac{3}{{16}} $$ theorem and affine sieve , 2011 .

[128]  Terence Tao,et al.  Freiman's theorem for solvable groups , 2009, Contributions Discret. Math..

[129]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[130]  E. Szemeri~di,et al.  On Sets of Integers Containing No Four Elements in Arithmetic Progression , .

[131]  Thomas P. Hayes,et al.  Near-independence of permutations and an almost sure polynomial bound on the diameter of the symmetric group , 2005, SODA '05.

[132]  Endre Szemerédi,et al.  A statistical theorem of set addition , 1994, Comb..

[133]  H. A. Helfgott,et al.  Growth in SL_3(Z/pZ) , 2008, 0807.2027.

[134]  Jan-Christoph Schlage-Puchta,et al.  Applications of character estimates to statistical problems for the symmetric group , 2012, Comb..

[135]  On uniform exponential growth for linear groups , 2001, math/0108157.

[136]  Ehud Hrushovski,et al.  Model Theory with Applications to Algebra and Analysis: Counting and dimensions , 2008 .

[137]  Mei-Chu Chang PRODUCT THEOREMS IN SL2 AND SL3 , 2006, Journal of the Institute of Mathematics of Jussieu.

[138]  J. Bourgain,et al.  Expansion and random walks in SL_d(Z/p^n Z): II , 2008 .

[139]  Oren Dinai Poly-log diameter bounds for some families of finite groups , 2006 .

[140]  John D. Lafferty,et al.  Fast Fourier Analysis for SL2 over a Finite Field and Related Numerical Experiments , 1992, Exp. Math..

[141]  G. A. Margulis,et al.  Explicit constructions of graphs without short cycles and low density codes , 1982, Comb..

[142]  Oren Dinai Growth in SL2 over finite fields , 2010 .

[143]  J. Milnor Growth of finitely generated solvable groups , 1968 .

[144]  J. Dixon,et al.  Permutation Groups , 1996 .

[145]  H. Wielandt,et al.  Finite Permutation Groups , 1964 .

[146]  H. Furstenberg Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions , 1977 .

[147]  G. A. Soifer,et al.  Free Subgroups of Linear Groups , 2007 .

[148]  Alexander Lubotzky,et al.  Expander graphs in pure and applied mathematics , 2011, 1105.2389.

[149]  P. P. Varj'u Expansion in $SL_d(O_K/I)$, $I$ square-free , 2010, 1001.3664.

[150]  A. Razborov A product theorem in free groups , 2014 .

[151]  Zoltán Király,et al.  On the Combinatorics of Projective Mappings , 2001 .

[152]  J. Dodziuk Difference equations, isoperimetric inequality and transience of certain random walks , 1984 .

[153]  Matthew C. H. Tointon Freiman's theorem in an arbitrary nilpotent group , 2012, 1211.3989.

[154]  Imre Z. Ruzsa,et al.  An analog of Freiman's theorem in groups , 1993 .

[155]  T. A. Springer Conjugacy classes in algebraic groups , 1986 .

[156]  Y. Guivarc’h Croissance polynomiale et périodes des fonctions harmoniques , 1973 .

[157]  Emmanuel Breuillard,et al.  Strong Uniform Expansion in SL(2, p) , 2010 .