Separability of scalar random multisine signals

Random multisines have successfully been used as input signals in many system identification experiments. In this paper, it is shown that scalar random multisine signals with a flat amplitude spectrum are separable of order one. The separability property means that certain conditional expectations are linear and it implies that random multisines can easily be used to obtain accurate estimates of the linear time-invariant part of a Hammerstein system. Furthermore, higher order separability is investigated.

[1]  Lennart Ljung,et al.  Linear approximations of nonlinear FIR systems for separable input processes , 2005, Autom..

[2]  M. Enqvist Linear models of nonlinear systems , 2005 .

[3]  K. Narendra,et al.  An iterative method for the identification of nonlinear systems using a Hammerstein model , 1966 .

[4]  Er-Wei Bai,et al.  Convergence of the iterative Hammerstein system identification algorithm , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[5]  A. V. Balakrishnan,et al.  On a characterization of processes for which optimal mean-square systems are of specified form , 1960, IRE Trans. Inf. Theory.

[6]  Lennart Ljung,et al.  Estimating Linear Time-invariant Models of Nonlinear Time-varying Systems , 2001, Eur. J. Control.

[7]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[8]  J. Schoukens,et al.  Parametric and nonparametric identification of linear systems in the presence of nonlinear distortions-a frequency domain approach , 1998, IEEE Trans. Autom. Control..

[9]  Martin Enqvist IDENTIFICATION OF HAMMERSTEIN SYSTEMS USING SEPARABLE RANDOM MULTISINES , 2006 .

[10]  Yves Rolain,et al.  Identification of linear systems with nonlinear distortions , 2003, Autom..

[11]  J. F. Wagner,et al.  Elliptically symmetric distributions , 1968, IEEE Trans. Inf. Theory.

[12]  S. Billings,et al.  Theory of separable processes with applications to the identification of nonlinear systems , 1978 .

[13]  Svante Gunnarsson,et al.  Estimation of Nonlinear Effects in Frequency Domain Identification of Industrial Robots , 2008, IEEE Transactions on Instrumentation and Measurement.

[14]  J. Anthonis,et al.  Nonlinear system identification on a combine harvester , 2006, 2006 American Control Conference.

[15]  Julian J. Bussgang,et al.  Crosscorrelation functions of amplitude-distorted gaussian signals , 1952 .

[16]  Johan Schoukens,et al.  Initial estimates of Wiener and Hammerstein systems using multisine excitation , 2001, IEEE Trans. Instrum. Meas..

[17]  Yves Rolain,et al.  Frequency response function measurements in the presence of nonlinear distortions , 2001, Autom..

[18]  Albert H. Nuttall Theory and application of the separable class of random processes , 1958 .

[19]  Jonathan R. Partington,et al.  On linear models for nonlinear systems , 2003, Autom..

[20]  Keith R. Godfrey,et al.  Perturbation signals for system identification , 1993 .

[21]  D. Brillinger The identification of a particular nonlinear time series system , 1977 .

[22]  L. Råde,et al.  Mathematics handbook for science and engineering , 1995 .

[23]  Johan Schoukens,et al.  Hammerstein-Wiener system estimator initialization , 2002, Autom..

[24]  Rik Pintelon,et al.  Generation of enhanced initial estimates for Hammerstein Systems , 2004, Autom..

[25]  Ilya V. Kolmanovsky,et al.  Predictive energy management of a power-split hybrid electric vehicle , 2009, 2009 American Control Conference.

[26]  Rik Pintelon,et al.  System Identification: A Frequency Domain Approach , 2012 .

[27]  Jonathan R. Partington,et al.  Least-squares LTI approximation of nonlinear systems and quasistationarity analysis , 2004, Autom..