Lower bounds for the integration error for multivariate functions with mixed smoothness and optimal Fibonacci cubature for functions on the square

We prove lower bounds for the error of optimal cubature formulae for d-variate functions from Besov spaces of mixed smoothness in the case , and , where is either the d-dimensional torus or the d-dimensional unit cube . In addition, we prove upper bounds for QMC integration on the Fibonacci-lattice for bivariate periodic functions from in the case , and . A non-periodic modification of this classical formula yields upper bounds for if . In combination these results yield the correct asymptotic error of optimal cubature formulae for functions from and indicate that a corresponding result is most likely also true in case . This is compared to the correct asymptotic of optimal cubature formulae on Smolyak grids which results in the observation that any cubature formula on Smolyak grids can never achieve the optimal worst-case error.

[1]  W. Sickel,et al.  The Smolyak agorithm, sampling on sparse grids and functions spaces of dominated mixed smoothness , 2007 .

[2]  I. Meleshko Approximate evaluation of Cauchy type repeated integrals and their principal values , 1979 .

[3]  H. Triebel,et al.  Topics in Fourier Analysis and Function Spaces , 1987 .

[4]  V. N. Temlyakov Error estimates of quadrature formulas for classes of functions with bounded mixed derivative , 1989 .

[5]  H. Triebel Bases in Function Spaces, Sampling, Discrepancy, Numerical Integration , 2010 .

[6]  Tino Ullrich,et al.  Function Spaces with Dominating Mixed Smoothness Characterization by Differences , 2006 .

[7]  Lev Markhasin,et al.  Discrepancy and integration in function spaces with dominating mixed smoothness , 2013, 1307.2114.

[8]  S. M. Nikol'skii Approximation of functions of several variables by polynomials , 1969 .

[9]  Vladimir N. Temlyakov,et al.  Cubature formulas, discrepancy, and nonlinear approximation , 2003, J. Complex..

[10]  H. Bungartz,et al.  Sparse grids , 2004, Acta Numerica.

[11]  W. Sickel,et al.  The Smolyak Algorithm, Sampling on Sparse Grids and Function Spaces of Dominating Mixed Smoothness , 2007 .

[12]  W. Sickel,et al.  Spline interpolation on sparse grids , 2011 .

[13]  E. Hlawka Zur angenäherten Berechnung mehrfacher Integrale , 1962 .

[14]  V V Dubinin,et al.  CUBATURE FORMULAS FOR CLASSES OF FUNCTIONS WITH BOUNDED MIXED DIFFERENCE , 1993 .

[15]  Lev Markhasin DISCREPANCY OF GENERALIZED HAMMERSLEY TYPE POINT SETS IN BESOV SPACES WITH DOMINATING MIXED SMOOTHNESS , 2013 .

[16]  Tino Ullrich,et al.  Optimal cubature in Besov spaces with dominating mixed smoothness on the unit square , 2014, J. Complex..

[17]  Lev Markhasin,et al.  Quasi-Monte Carlo methods for integration of functions with dominating mixed smoothness in arbitrary dimension , 2012, J. Complex..

[18]  Dinh Dng B-spline quasi-interpolant representations and sampling recovery of functions with mixed smoothness , 2011 .

[19]  V. N. Temli︠a︡kov Approximation of periodic functions , 1993 .

[20]  Rui Yu,et al.  Fibonacci sets and symmetrization in discrepancy theory , 2012, J. Complex..

[21]  Dinh Dung,et al.  B-spline quasi-interpolant representations and sampling recovery of functions with mixed smoothness , 2010, J. Complex..

[22]  Hans-Joachim Bungartz,et al.  Acta Numerica 2004: Sparse grids , 2004 .