Phenomenology of induced electroweak symmetry breaking

A bstractWe study the phenomenology of models of electroweak symmetry breaking where the Higgs potential is destabilized by a tadpole arising from the coupling to an “auxiliary” Higgs sector. The auxiliary Higgs sector can be either perturbative or strongly coupled, similar to technicolor models. Since electroweak symmetry breaking is driven by a tadpole, the cubic and quartic Higgs couplings can naturally be significantly smaller than their values in the standard model. The theoretical motivation for these models is that they can explain the 125 GeV Higgs mass in supersymmetry without fine-tuning. The auxiliary Higgs sector contains additional Higgs states that cannot decouple from standard model particles, so these models predict a rich phenomenology of Higgs physics beyond the standard model. In this paper we analyze a large number of direct and indirect constraints on these models. We present the current constraints after the 8 TeV run of the LHC, and give projections for the sensitivity of the upcoming 14 TeV run. We find that the strongest constraints come from the direct searches A0 → Zh, A0→tt¯$$ {A}^0\to t\overline{t} $$, with weaker constraints from Higgs coupling fits. For strongly-coupled models, additional constraints come from ρ+ → WZ where ρ+ is a vector resonance. Our overall conclusion is that a significant parameter space for such models is currently open, allowing values of the Higgs cubic coupling down to 0.4 times the standard model value for weakly coupled models and vanishing cubic coupling for strongly coupled models. The upcoming 14 TeV run of the LHC will stringently test this scenario and we identify several new searches with discovery potential for this class of models.

[1]  Ellis,et al.  Higgs bosons in a nonminimal supersymmetric model. , 1989, Physical review. D, Particles and fields.

[2]  J. Ellis,et al.  On radiative corrections to supersymmetric Higgs boson masses and their implications for LEP searches , 1991 .

[3]  Nicola De Filippis,et al.  Electroweak measurements in electron positron collisions at W-boson-pair energies at LEP , 2013 .

[4]  A. Kagan,et al.  Bosonic technicolor in strings , 1992 .

[5]  Hayes,et al.  Review of Particle Physics. , 1996, Physical review. D, Particles and fields.

[6]  C. Grojean,et al.  If no Higgs then what? , 2011, 1108.1183.

[7]  M. Carena,et al.  Analytical expressions for radiatively corrected Higgs masses and couplings in the MSSM , 1995 .

[8]  M. Z. Mehta,et al.  Searches for new physics using the tt¯ invariant mass distribution in pp collisions at √s=8 TeV. , 2013, Physical review letters.

[9]  Richard D. Ball,et al.  Updated Higgs cross section at approximate N3LO , 2014, 1404.3204.

[10]  J. T. Childers,et al.  Search for new particles in events with one lepton and missing transverse momentum in pp collisions at s$$ \sqrt{s} $$ = 8 TeV with the ATLAS detector , 2016 .

[11]  Radiative corrections to the Z b anti-b vertex and constraints on extended Higgs sectors , 1999, hep-ph/9909335.

[12]  A. Azatov,et al.  Superconformal technicolor. , 2011, Physical review letters.

[13]  Andreas Papaefstathiou,et al.  Higgs boson self-coupling measurements using ratios of cross sections , 2013, 1301.3492.

[14]  A. Djouadi The anatomy of electroweak symmetry breaking Tome II: The Higgs bosons in the Minimal Supersymmetric Model , 2005, hep-ph/0503173.

[15]  S. M. Etesami,et al.  Search for neutral MSSM Higgs bosons decaying to a pair of tau leptons in pp collisions , 2014, Journal of High Energy Physics.

[16]  Patrick J. Fox,et al.  Supersymmetry with a sister Higgs boson , 2012, 1207.5522.

[17]  Yuhsin Tsai,et al.  Induced electroweak symmetry breaking and supersymmetric naturalness , 2013, 1306.6354.

[18]  Holographic bosonic technicolor , 2006, hep-ph/0612242.

[19]  Richard D. Ball,et al.  Higgs production in gluon fusion beyond NNLO , 2013, 1303.3590.

[20]  Maren Padeffke-Kirkland Naturalness in Supersymmetry , 2015 .

[21]  J. Cornwall,et al.  Can supersymmetry breaking lead to electroweak symmetry breaking via formation of scalar bound states , 2012, 1210.6433.

[22]  M. Mühlleitner,et al.  The measurement of the Higgs self-coupling at the LHC: theoretical status , 2012, 1212.5581.

[23]  Yi-cheng Huang,et al.  Erratum 2: Electroweak two-loop corrections to sin2$ \theta_{\mathrm{eff}}^{{b\overline{b}}} $ and Rb using numerical Mellin-Barnes integrals , 2013 .

[24]  A. Kagan,et al.  The family mass hierarchy problem in bosonic technicolor , 1990 .

[25]  Search for a pseudoscalar boson A decaying into a Z and an h boson in the llbb final state , 2014 .

[26]  Marco Serone,et al.  A novel class of string models with Scherk{Schwarz supersymmetry breaking , 2001 .

[27]  M. Friedl,et al.  Search for neutral MSSM Higgs bosons decaying to a pair of tau leptons in pp collisions , 2014, Journal of High Energy Physics.

[28]  J. T. Childers,et al.  Search for neutral Higgs bosons of the minimal supersymmetric standard model in pp collisions at s=8$$ \sqrt{s}=8 $$ TeV with the ATLAS detector , 2014 .

[29]  The Cms Collaboration Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC , 2012, 1207.7235.

[30]  Matthew J. Dolan,et al.  Higgs self-coupling measurements at the LHC , 2012, 1206.5001.

[31]  The Cms Collaboration Precise determination of the mass of the Higgs boson and studies of the compatibility of its couplings with the standard model , 2014 .

[32]  Uehara,et al.  Is the rho meson a dynamical gauge boson of hidden local symmetry? , 1985, Physical review letters.

[33]  David J. Miller,et al.  Handbook of LHC Higgs Cross Sections: 3. Higgs Properties , 2013, 1307.1347.

[34]  A. Kagan,et al.  Renormalization group aspects of bosonic technicolor , 1991 .

[35]  Robert V. Harlander,et al.  Production of a pseudo-scalar Higgs boson at hadron colliders at next-to-next-to-leading order , 2002 .

[36]  Yasuhiro Okada,et al.  Upper bound of the lightest Higgs boson mass in the minimal supersymmetric standard model , 1991 .

[37]  David E. Kaplan,et al.  The Higgs mass bound in gauge extensions of the minimal supersymmetric standard model , 2003 .

[38]  K. Yamawaki,et al.  Nonlinear Realization and Hidden Local Symmetries , 1988 .

[39]  Sahal Yacoob,et al.  Search for WZ resonances in the fully leptonic channel using pp collisions at s=8 TeV with the ATLAS detector , 2014 .

[40]  J. Wacker,et al.  D-terms, unification, and the Higgs mass , 2004, hep-ph/0409127.

[41]  Relaxing the upper bound on the mass of the lightest supersymmetric Higgs boson , 2004, hep-ph/0408329.

[42]  U. Baur,et al.  Probing the Higgs self-coupling at hadron colliders using rare decays , 2003, hep-ph/0310056.

[43]  Properties of the Higgs-like boson in the decay H → ZZ → 4 ` in pp collisions at √ s = 7 and 8 TeV , 2013 .

[44]  Andrea Benaglia,et al.  Search for physics beyond the standard model in final states with a lepton and missing transverse energy in proton-proton collisions at √s=8 TeV , 2015 .

[45]  A. Kagan,et al.  Naturalness in Supersymmetry, or Raising the Supersymmetry Breaking Scale , 1990 .

[46]  A. Azatov,et al.  Superconformal technicolor: Models and phenomenology , 2011, 1106.4815.

[47]  M. Misiak,et al.  $ \overline{B}\ \to {X_s}\gamma $ in the Two Higgs Doublet Model up to next-to-next-to-leading order in QCD , 2012, 1208.2788.

[48]  C. Collaboration,et al.  Measurement of Higgs boson production and properties in the WW decay channel with leptonic final states , 2013, 1312.1129.

[49]  A. Brignole Radiative corrections to the supersymmetric neutral Higgs boson masses , 1992 .

[50]  V. M. Ghete,et al.  Measurement of Higgs boson production and properties in the WW decay channel with leptonic final states , 2013, Journal of High Energy Physics.

[51]  Higgs Working Group Report of the Snowmass 2013 Community Planning Study , 2013, 1310.8361.

[52]  R. S. Thorne,et al.  Parton distributions for the LHC , 2007, 0901.0002.

[53]  L. Hall,et al.  A natural SUSY Higgs near 125 GeV , 2011, 1112.2703.

[54]  A. Djouadi The Anatomy of electro-weak symmetry breaking. I: The Higgs boson in the standard model , 2005, hep-ph/0503172.

[55]  Jin Min Yang,et al.  A SM-like Higgs near 125 GeV in low energy SUSY: a comparative study for MSSM and NMSSM , 2012, 1202.5821.

[56]  H. Haber,et al.  Can the mass of the lightest Higgs boson of the minimal supersymmetric model be larger than mZ? , 1991, Physical review letters.

[57]  J. T. Childers,et al.  Measurement of Higgs boson production in the diphoton decay channel in pp collisions at center-of-mass energies of 7 and 8 TeV with the ATLAS detector , 2014, 1408.7084.

[58]  A. Pomarol,et al.  A distorted MSSM Higgs sector from low-scale strong dynamics , 2011, 1107.4697.

[59]  R. Harlander Production of a pseudoscalar Higgs boson at hadron colliders at next-to-next-to leading order , 2002 .

[60]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[61]  Yi-cheng Huang,et al.  Electroweak two-loop corrections to sin2$ \theta_{\text{eff}}^{{b\overline b }} $ and Rb using numerical Mellin-Barnes integrals , 2012 .

[62]  Ryszard S. Romaniuk,et al.  Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC , 2012 .

[63]  Alan D. Martin,et al.  Review of Particle Physics , 2014 .

[64]  R. Gatto,et al.  Effective weak interaction theory with a possible new vector resonance from a strong higgs sector , 1985 .

[65]  Yi-cheng Huang,et al.  Electroweak two-loop corrections to sin 2 θ b ¯ b eff and R b using numerical Mellin-Barnes integrals , 2012 .