Identifying, studying and making good use of macromolecular crystals

As technology advances, the crystal volume that can be used to collect useful X-ray diffraction data decreases. The technologies available to detect and study growing crystals beyond the optical resolution limit and methods to successfully place the crystal into the X-ray beam are discussed.

[1]  G. Labesse,et al.  In-plate protein crystallization, in situ ligand soaking and X-ray diffraction. , 2011, Acta crystallographica. Section D, Biological crystallography.

[2]  M. Groves,et al.  A method for the general identification of protein crystals in crystallization experiments using a noncovalent fluorescent dye. , 2007, Acta crystallographica. Section D, Biological crystallography.

[3]  Alexander E. Kaplan,et al.  Optical physics (A) , 1986 .

[4]  Igor Jurisica,et al.  Establishing a training set through the visual analysis of crystallization trials. Part II: crystal examples , 2008, Acta crystallographica. Section D, Biological crystallography.

[5]  Naomi E Chayen,et al.  Separating nucleation and growth in protein crystallization using dynamic light scattering. , 2002, Acta crystallographica. Section D, Biological crystallography.

[6]  C. Betzel,et al.  Dynamic Light Scattering in Protein Crystallization Droplets: Adaptations for Analysis and Optimization of Crystallization Processes , 2008 .

[7]  E. Permyakov Luminescent spectroscopy of proteins , 1992 .

[8]  Garth J Simpson,et al.  Nonlinear optical imaging of integral membrane protein crystals in lipidic mesophases. , 2010, Analytical chemistry.

[9]  Philippe Carpentier,et al.  Automated analysis of vapor diffusion crystallization drops with an X-ray beam. , 2004, Structure.

[10]  Michael Becker,et al.  Automated sample-scanning methods for radiation damage mitigation and diffraction-based centering of macromolecular crystals. , 2011, Journal of synchrotron radiation.

[11]  Christopher M. Dettmar,et al.  Integrated nonlinear optical imaging microscope for on-axis crystal detection and centering at a synchrotron beamline , 2013, Journal of synchrotron radiation.

[12]  Manfred Burghammer,et al.  Small is beautiful: protein micro-crystallography , 1998, Nature Structural Biology.

[13]  Tamir Gonen,et al.  Three-dimensional electron crystallography of protein microcrystals , 2013, eLife.

[14]  Meriem I. Said,et al.  Efficient optimization of crystallization conditions by manipulation of drop volume ratio and temperature , 2007, Protein science : a publication of the Protein Society.

[15]  N. Duke,et al.  Using X-ray excited UV fluorescence for biological crystal location , 2011 .

[16]  E. Fujimori Crosslinking and blue-fluorescence of photo-oxidized calf-lens α-crystallin , 1982 .

[17]  Raymond M Nagel,et al.  The application and use of chemical space mapping to interpret crystallization screening results , 2008, Acta crystallographica. Section D, Biological crystallography.

[18]  M. J. van der Woerd,et al.  Seeing the heat -- preliminary studies of cryocrystallography using infrared imaging. , 2002, Journal of synchrotron radiation.

[19]  Joseph R Luft,et al.  A deliberate approach to screening for initial crystallization conditions of biological macromolecules. , 2003, Journal of structural biology.

[20]  R. Judge,et al.  An ultraviolet fluorescence-based method for identifying and distinguishing protein crystals. , 2005, Acta crystallographica. Section D, Biological crystallography.

[21]  Victor S Lamzin,et al.  Quantitive evaluation of macromolecular crystallization experiments using 1,8-ANS fluorescence. , 2010, Acta crystallographica. Section D, Biological crystallography.

[22]  J. Lakowicz Principles of fluorescence spectroscopy , 1983 .

[23]  S. Antonyuk,et al.  Monitoring and validating active site redox states in protein crystals. , 2011, Biochimica et biophysica acta.

[24]  Igor Jurisica,et al.  Establishing a training set through the visual analysis of crystallization trials. Part I: ∼150 000 images , 2008, Acta crystallographica. Section D, Biological crystallography.

[25]  R. Ravelli,et al.  Phasing macromolecular structures with UV-induced structural changes. , 2006, Structure.

[26]  Gwyndaf Evans,et al.  High-speed crystal detection and characterization using a fast-readout detector , 2010, Acta crystallographica. Section D, Biological crystallography.

[27]  A Beteva,et al.  High-throughput sample handling and data collection at synchrotrons: embedding the ESRF into the high-throughput gene-to-structure pipeline. , 2006, Acta crystallographica. Section D, Biological crystallography.

[28]  Ji-Xin Cheng,et al.  Selective detection of protein crystals by second harmonic microscopy. , 2008, Journal of the American Chemical Society.

[30]  R. Herring,et al.  Examining Protein Crystallization Using Scanning Electron Microscopy , 2012, Microscopy and Microanalysis.

[31]  Kazuyoshi Itoh,et al.  Three-dimensional, non-invasive, cross-sectional imaging of protein crystals using ultrahigh resolution optical coherence tomography , 2012, Biomedical optics express.

[32]  K. Palczewski,et al.  Imaging of protein crystals with two-photon microscopy. , 2012, Biochemistry.

[33]  W. Webb,et al.  TWO-PHOTON FLUORESCENCE IMAGING OF IMPURITY DISTRIBUTIONS IN PROTEIN CRYSTALS , 1999 .

[34]  Hideaki Maeda,et al.  Three-dimensional Raman spectroscopic imaging of protein crystals deposited on a nanodroplet. , 2012, The Analyst.

[35]  W William Wilson,et al.  Light scattering as a diagnostic for protein crystal growth--a practical approach. , 2003, Journal of structural biology.

[36]  Peter Kuhn,et al.  Blu-Ice and the Distributed Control System: software for data acquisition and instrument control at macromolecular crystallography beamlines. , 2002, Journal of synchrotron radiation.

[37]  Lawrence J. DeLucas,et al.  Applications of the second virial coefficient: protein crystallization and solubility , 2014, Acta crystallographica. Section F, Structural biology communications.

[38]  Kenneth A. Frankel,et al.  The minimum crystal size needed for a complete diffraction data set , 2010, Acta crystallographica. Section D, Biological crystallography.

[39]  T. Tomizaki,et al.  SLS Crystallization Platform at Beamline X06DA—A Fully Automated Pipeline Enabling in Situ X-ray Diffraction Screening , 2011 .

[40]  R. Herring,et al.  Imaging and diffraction of protein crystallization using TEM. , 2013, Microscopy.

[41]  G. Bourenkov,et al.  Automated mounting, centering and screening of crystals for high-throughput protein crystallography. , 2002, Acta crystallographica. Section D, Biological crystallography.

[42]  R. Stevens,et al.  Rastering strategy for screening and centring of microcrystal samples of human membrane proteins with a sub-10 µm size X-ray synchrotron beam , 2009, Journal of The Royal Society Interface.

[43]  G. Simpson,et al.  Second-order nonlinear optical imaging of chiral crystals. , 2011, Annual review of analytical chemistry.

[44]  J. Abrahams,et al.  Imaging protein three-dimensional nanocrystals with cryo-EM. , 2013, Acta crystallographica. Section D, Biological crystallography.

[45]  S. Kazarian,et al.  Micro ATR FTIR imaging of hanging drop protein crystallisation , 2012 .

[46]  S. Boxer,et al.  Nitrile bonds as infrared probes of electrostatics in ribonuclease S. , 2010, The journal of physical chemistry. B.

[47]  S. Kazarian,et al.  Recent applications of ATR FTIR spectroscopy and imaging to proteins. , 2013, Biochimica et biophysica acta.

[48]  D. Drew,et al.  Crystallization of small proteins assisted by green fluorescent protein. , 2010, Acta crystallographica. Section D, Biological crystallography.

[49]  R. Thorne,et al.  Development of high-performance X-ray transparent crystallization plates for in situ protein crystal screening and analysis. , 2011, Acta crystallographica. Section D, Biological crystallography.

[50]  J. D. Bernal,et al.  X-Ray Photographs of Crystalline Pepsin , 1934, Nature.

[51]  Shane A. Seabrook,et al.  Some practical guidelines for UV imaging in the protein crystallization laboratory , 2013, Acta crystallographica. Section F, Structural biology and crystallization communications.

[52]  Robert M. Glaeser,et al.  UV microscopy at 280 nm is effective in screening for the growth of protein microcrystals , 2005 .

[53]  Sergey Stepanov,et al.  JBluIce-EPICS control system for macromolecular crystallography. , 2011, Acta crystallographica. Section D, Biological crystallography.

[54]  C. Schulze-Briese,et al.  Automatic loop centring with a high-precision goniometer head at the SLS macromolecular crystallography beamlines , 2011, Journal of synchrotron radiation.

[55]  Michael Becker,et al.  Towards protein-crystal centering using second-harmonic generation (SHG) microscopy. , 2013, Acta crystallographica. Section D, Biological crystallography.

[56]  Julia Narevicius,et al.  Facility Updates: Remote Access to the SSRL Macromolecular Crystallography Beamlines , 2005 .

[57]  Pawel Grochulski,et al.  MxDC and MxLIVE: software for data acquisition, information management and remote access to macromolecular crystallography beamlines. , 2012, Journal of synchrotron radiation.

[58]  Timothy McPhillips,et al.  New paradigm for macromolecular crystallography experiments at SSRL: automated crystal screening and remote data collection , 2008, Acta crystallographica. Section D, Biological crystallography.

[59]  A manual low-cost protein-crystallization plate jig for in situ diffraction in the home laboratory , 2011, Journal of applied crystallography.

[60]  UV LED lighting for automated crystal centring , 2010, Journal of synchrotron radiation.

[61]  S. Kazarian,et al.  Attenuated total reflection-FT-IR spectroscopic imaging of protein crystallization. , 2009, Analytical chemistry.

[62]  A. Bacher,et al.  Electron microscopic observations on protein crystallization : adsorption layers, aggregates and crystal defects , 2000 .

[63]  Jennifer R. Wolfley,et al.  What's in a drop? Correlating observations and outcomes to guide macromolecular crystallization experiments. , 2011, Crystal growth & design.

[64]  S Michael Soltis,et al.  Crystallographic and single-crystal spectral analysis of the peroxidase ferryl intermediate. , 2010, Biochemistry.

[65]  J. García‐Ruiz,et al.  Ab initio crystallographic structure determination of insulin from protein to electron density without crystal handling. , 2002, Acta crystallographica. Section D, Biological crystallography.

[66]  E. Pebay-Peyroula,et al.  X-ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases. , 1997, Science.

[67]  C. Sato,et al.  Direct Observation of Protein Microcrystals in Crystallization Buffer by Atmospheric Scanning Electron Microscopy , 2012, International journal of molecular sciences.

[68]  E. Snell,et al.  Finding a cold needle in a warm haystack: infrared imaging applied to locating cryocooled crystals in loops , 2005 .

[69]  C. Khosla,et al.  Use of transmission electron microscopy to identify nanocrystals of challenging protein targets , 2014, Proceedings of the National Academy of Sciences.

[70]  Georg Weidenspointner,et al.  Femtosecond X-ray protein nanocrystallography , 2011, Nature.

[71]  V. Agrawal,et al.  A novel UV laser-induced visible blue radiation from protein crystals and aggregates: scattering artifacts or fluorescence transitions of peptide electrons delocalized through hydrogen bonding? , 2004, Archives of biochemistry and biophysics.

[72]  Serge Massar,et al.  Optimality of the genetic code with respect to protein stability and amino-acid frequencies , 2001, Genome Biology.

[73]  G. Diakun,et al.  Science experiments via telepresence at a synchrotron radiation source facility , 2008, Journal of synchrotron radiation.

[74]  Richard Giegé,et al.  A historical perspective on protein crystallization from 1840 to the present day , 2013, The FEBS journal.

[75]  Christian Morawe,et al.  The ID23-2 structural biology microfocus beamline at the ESRF , 2009, Journal of synchrotron radiation.

[76]  S Michael Soltis,et al.  Diffraction-based automated crystal centering. , 2007, Journal of synchrotron radiation.

[77]  T. Connolley,et al.  Visualization of membrane protein crystals in lipid cubic phase using X-ray imaging , 2013, Acta crystallographica. Section D, Biological crystallography.

[78]  D. Bourgeois,et al.  Raman-assisted crystallography of biomolecules at the synchrotron: instrumentation, methods and applications. , 2011, Biochimica et biophysica acta.

[79]  Victor S Lamzin,et al.  Automated detection and centring of cryocooled protein crystals. , 2006, Acta crystallographica. Section D, Biological crystallography.

[80]  J. Newman,et al.  Using Time Courses To Enrich the Information Obtained from Images of Crystallization Trials , 2014 .

[81]  Philippe Andrey,et al.  Using image analysis for automated crystal positioning in a synchrotron X‐ray beam for high‐throughput macromolecular crystallography , 2004 .

[82]  Florent Cipriani,et al.  C3D: a program for the automated centring of cryocooled crystals. , 2006, Acta crystallographica. Section D, Biological crystallography.

[83]  Joseph R Luft,et al.  Lessons from high-throughput protein crystallization screening: 10 years of practical experience , 2011, Expert opinion on drug discovery.

[84]  Emma L. DeWalt,et al.  Two-photon excited UV fluorescence for protein crystal detection. , 2011, Acta crystallographica. Section D, Biological crystallography.

[85]  Marc L Pusey,et al.  Trace fluorescent labeling for high-throughput crystallography. , 2006, Acta crystallographica. Section D, Biological crystallography.