On Graphs for Intuitionistic Modal Logics

We present a graph approach to intuitionistic modal logics, which provides uniform formalisms for expressing, analysing and comparing Kripke-like semantics. This approach uses the flexibility of graph calculi to express directly and intuitively possible-world semantics for intuitionistic modal logics. We illustrate the benefits of these ideas by applying them to some familiar cases of intuitionistic multi-modal semantics.

[1]  Paulo A. S. Veloso,et al.  On Graph Refutation for Relational Inclusions , 2011, LSFA.

[2]  Deepak Garg,et al.  Countermodels from Sequent Calculi in Multi-Modal Logics , 2012, 2012 27th Annual IEEE Symposium on Logic in Computer Science.

[3]  Fiora Pirri,et al.  A uniform tableau method for intuitionistic modal logics I , 1994, Stud Logica.

[4]  M. de Rijke,et al.  Modal Logic , 2001, Cambridge Tracts in Theoretical Computer Science.

[5]  Alex K. Simpson,et al.  The proof theory and semantics of intuitionistic modal logic , 1994 .

[6]  Gordon D. Plotkin,et al.  A Framework for Intuitionistic Modal Logics , 1988, TARK.

[7]  Yakoub Salhi,et al.  Sequent calculi and decidability for intuitionistic hybrid logic , 2011, Inf. Comput..

[8]  M. Fitting Proof Methods for Modal and Intuitionistic Logics , 1983 .

[9]  Lutz Straßburger,et al.  Label-free Modular Systems for Classical and Intuitionistic Modal Logics , 2014, Advances in Modal Logic.

[10]  Mario R. F. Benevides,et al.  On Graph Calculi for Multi-modal Logics , 2015, LSFA.

[11]  Gisèle Fischer Servi,et al.  Semantics for a Class of Intuitionistic Modal Calculi , 1980 .

[12]  Laurent Catach Normal Multimodal Logics , 1988, AAAI.

[13]  W. B. Ewald,et al.  Intuitionistic tense and modal logic , 1986, Journal of Symbolic Logic.

[14]  Gavin Lowe,et al.  Proofs with Graphs , 1996, Sci. Comput. Program..

[15]  Gordon Plotkin,et al.  A framework for intuitionistic modal logics: extended abstract , 1986 .

[16]  Francesca Poggiolesi,et al.  The Method of Tree-Hypersequents for Modal Propositional Logic , 2009, Towards Mathematical Philosophy.