Spectral signature analysis of false positive burned area detection from agricultural harvests using Sentinel-2 data

[1]  Frédéric Achard,et al.  The Potential of Sentinel Satellites for Burnt Area Mapping and Monitoring in the Congo Basin Forests , 2016, Remote. Sens..

[2]  N. Koutsias,et al.  Historical background and current developments for mapping burned area from satellite Earth observation , 2019, Remote Sensing of Environment.

[3]  S. Stehman,et al.  Comparing the accuracies of remote sensing global burned area products using stratified random sampling and estimation , 2015 .

[4]  J. Randerson,et al.  Global fire emissions estimates during 1997–2016 , 2017 .

[5]  Federico Filipponi,et al.  Exploitation of Sentinel-2 Time Series to Map Burned Areas at the National Level: A Case Study on the 2017 Italy Wildfires , 2019, Remote. Sens..

[6]  A. Huete,et al.  Overview of the radiometric and biophysical performance of the MODIS vegetation indices , 2002 .

[7]  J. Dwyer,et al.  Mapping burned areas using dense time-series of Landsat data , 2017 .

[8]  George P. Petropoulos,et al.  Determining the use of Sentinel-2A MSI for wildfire burning & severity detection , 2018, International Journal of Remote Sensing.

[9]  Sander Veraverbeke,et al.  The temporal dimension of differenced Normalized Burn Ratio (dNBR) fire/burn severity studies: the case of the large 2007 Peloponnese wildfires in Greece. , 2010 .

[10]  D. Roy,et al.  The Collection 6 MODIS burned area mapping algorithm and product , 2018, Remote sensing of environment.

[11]  A. Huete A soil-adjusted vegetation index (SAVI) , 1988 .

[12]  W. Schroeder,et al.  The New VIIRS 375 m active fire detection data product: Algorithm description and initial assessment , 2014 .

[13]  F. Lloret,et al.  Components of tree resilience: effects of successive low‐growth episodes in old ponderosa pine forests , 2011 .

[14]  Ronald Rocco,et al.  Human–environmental drivers and impacts of the globally extreme 2017 Chilean fires , 2018, Ambio.

[15]  Michael Brauer,et al.  Critical Review of Health Impacts of Wildfire Smoke Exposure , 2016, Environmental health perspectives.

[16]  A. Huete,et al.  A Modified Soil Adjusted Vegetation Index , 1994 .

[17]  A. Smith,et al.  Production of Landsat ETM+ reference imagery of burned areas within Southern African savannahs: comparison of methods and application to MODIS , 2007 .

[18]  Lorraine Remer,et al.  Detection of forests using mid-IR reflectance: an application for aerosol studies , 1994, IEEE Trans. Geosci. Remote. Sens..

[19]  Gloria Bordogna,et al.  A method for extracting burned areas from Landsat TM/ETM+ images by soft aggregation of multiple Spectral Indices and a region growing algorithm , 2012 .

[20]  J. O'Leary,et al.  Assessing postfire recovery of chamise chaparral using multi-temporal spectral vegetation index trajectories derived from Landsat imagery , 2016 .

[21]  João M. N. Silva,et al.  Assessing the feasibility of a global model for multi-temporal burned area mapping using SPOT-VEGETATION data , 2004 .

[22]  S. K. Akagi,et al.  The Fire INventory from NCAR (FINN): a high resolution global model to estimate the emissions from open burning , 2010 .

[23]  E. Chuvieco,et al.  Development of a Sentinel-2 burned area algorithm: Generation of a small fire database for sub-Saharan Africa , 2019, Remote Sensing of Environment.

[24]  Carol Miller,et al.  A New Metric for Quantifying Burn Severity: The Relativized Burn Ratio , 2014, Remote. Sens..

[25]  Wen Xiao,et al.  Evaluating the Best Spectral Indices for the Detection of Burn Scars at Several Post-Fire Dates in a Mountainous Region of Northwest Yunnan, China , 2018, Remote. Sens..

[26]  G. A. Blackburn,et al.  Hyperspectral remote sensing of plant pigments. , 2006, Journal of experimental botany.

[27]  D. Roy,et al.  An active-fire based burned area mapping algorithm for the MODIS sensor , 2009 .

[28]  D. Sims,et al.  Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages , 2002 .

[29]  Roger F. Auch,et al.  Conterminous United States land cover change patterns 2001–2016 from the 2016 National Land Cover Database , 2020, ISPRS journal of photogrammetry and remote sensing : official publication of the International Society for Photogrammetry and Remote Sensing.

[30]  C. Justice,et al.  Global distribution and seasonality of active fires as observed with the Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) sensors , 2006 .

[31]  Christopher O. Justice,et al.  Spatial and temporal intercomparison of four global burned area products , 2018, Int. J. Digit. Earth.

[32]  S. Plummer,et al.  Generation and analysis of a new global burned area product based on MODIS 250 m reflectance bands and thermal anomalies , 2018, Earth System Science Data.

[33]  J. Randerson,et al.  The Impact of Boreal Forest Fire on Climate Warming , 2006, Science.

[34]  J. Randerson,et al.  Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009) , 2010 .

[35]  Nicholas Goodwin,et al.  Development of an automated method for mapping fire history captured in Landsat TM and ETM + time series across Queensland, Australia , 2014 .

[36]  R. Morales Betancourt,et al.  Regional air quality impact of northern South America biomass burning emissions , 2019, Atmospheric Environment.

[37]  Gabriel Navarro,et al.  Evaluation of forest fire on Madeira Island using Sentinel-2A MSI imagery , 2017, Int. J. Appl. Earth Obs. Geoinformation.

[38]  M. Wimberly,et al.  Forest degradation promotes fire during drought in moist tropical forests of Ghana , 2019, Forest Ecology and Management.

[39]  Sander Veraverbeke,et al.  Evaluation of pre/post-fire differenced spectral indices for assessing burn severity in a Mediterranean environment with Landsat Thematic Mapper , 2011 .

[40]  Mustapha Mabrouki,et al.  An improved algorithm for mapping burnt areas in the Mediterranean forest landscape of Morocco , 2018, Journal of Forestry Research.

[41]  Toon Spanhove,et al.  Burned Area Detection and Burn Severity Assessment of a Heathland Fire in Belgium Using Airborne Imaging Spectroscopy (APEX) , 2014, Remote. Sens..

[42]  R. Lasaponara Estimating spectral separability of satellite derived parameters for burned areas mapping in the Calabria region by using SPOT-Vegetation data , 2006 .

[43]  Alfonso Fernández-Manso,et al.  SENTINEL-2A red-edge spectral indices suitability for discriminating burn severity , 2016, Int. J. Appl. Earth Obs. Geoinformation.

[44]  A. Gitelson,et al.  Use of a green channel in remote sensing of global vegetation from EOS- MODIS , 1996 .

[45]  Richard A. Houghton,et al.  Global and regional fluxes of carbon from land use and land cover change 1850–2015 , 2017 .

[46]  E. Chuvieco,et al.  Assessment of different spectral indices in the red-near-infrared spectral domain for burned land discrimination , 2002 .

[47]  J. Pereira,et al.  Radiometric analysis of SPOT-VEGETATION images for burnt area detection in Northern Australia , 2002 .

[48]  V. Caselles,et al.  Mapping burns and natural reforestation using thematic Mapper data , 1991 .

[49]  David P. Roy,et al.  Separability Analysis of Sentinel-2A Multi-Spectral Instrument (MSI) Data for Burned Area Discrimination , 2016, Remote. Sens..

[50]  C. Tucker Red and photographic infrared linear combinations for monitoring vegetation , 1979 .

[51]  José M. C. Pereira,et al.  A patch-based algorithm for global and daily burned area mapping , 2019, Remote Sensing of Environment.

[52]  João M. N. Silva,et al.  Spectral characterisation and discrimination of burnt areas , 1999 .

[53]  S. Flasse,et al.  An evaluation of different bi-spectral spaces for discriminating burned shrub-savannah , 2001 .

[54]  Jay D. Miller,et al.  Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR) , 2007 .

[55]  Emilio Chuvieco,et al.  Burnt Area Index (BAIM) for burned area discrimination at regional scale using MODIS data , 2006 .

[56]  Scott J. Goetz,et al.  Corrigendum: Satellite observations of high northern latitude vegetation productivity changes between 1982 and 2008: ecological variability and regional differences , 2012 .

[57]  Federico Filipponi,et al.  BAIS2: Burned Area Index for Sentinel-2 , 2018 .

[58]  S. Page,et al.  The amount of carbon released from peat and forest fires in Indonesia during 1997 , 2002, Nature.