On cyclic DNA codes

This paper considers cyclic DNA codes of arbitrary length over the ring R = F2[u]/(u4 - 1). A mapping is given between the elements of R and the alphabet {A, C, G, T} which allows the additive stem distance to be extended to this ring. Then, cyclic codes over R are designed such that their images under the mapping are also cyclic or quasi-cyclic of index 2 with designed hybridization energy. The hybridization energy and additive distance are shown to be functions of the neighborhood energy.

[1]  Oliver D. King,et al.  Linear constructions for DNA codes , 2005, Theor. Comput. Sci..

[2]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[3]  H. Blöcker,et al.  Predicting DNA duplex stability from the base sequence. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Masud Mansuripur,et al.  Information storage and retrieval using macromolecules as storage media , 2003, Optical Data Storage.

[5]  Taher Abualrub,et al.  Cyclic codes over the rings Z2 + uZ2 and Z2 + uZ2 + u2Z2 , 2007, Des. Codes Cryptogr..

[6]  Ali Ghrayeb,et al.  Construction of cyclic codes over GF(4) for DNA computing , 2006, J. Frankl. Inst..

[7]  Navin Kashyap,et al.  On the Design of Codes for DNA Computing , 2005, WCC.

[8]  R. Nussinov,et al.  Fast algorithm for predicting the secondary structure of single-stranded RNA. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[9]  J. SantaLucia,et al.  A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Erik Winfree,et al.  On applying molecular computation to the data encryption standard , 1999, DNA Based Computers.

[11]  AbualrubTaher,et al.  Cyclic codes over the rings Z2 + uZ2 and Z2 + uZ2 + u2Z2 , 2007 .

[12]  L M Adleman,et al.  Molecular computation of solutions to combinatorial problems. , 1994, Science.

[13]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[14]  Arkadii G. D'yachkov,et al.  On critical relative distance of DNA codes for additive stem similarity , 2010, 2010 IEEE International Symposium on Information Theory.

[15]  Arkadii G. D'yachkov,et al.  A Weighted Insertion-Deletion Stacked Pair Thermodynamic Metric for DNA Codes , 2004, DNA.

[16]  Ali Ghrayeb,et al.  Cyclic DNA codes over the ring F2[u]/(u2-1) based on the deletion distance , 2009, J. Frankl. Inst..

[17]  N. J. A. Sloane,et al.  Modular andp-adic cyclic codes , 1995, Des. Codes Cryptogr..

[18]  Sergio R. López-Permouth,et al.  Cyclic and negacyclic codes over finite chain rings , 2004, IEEE Transactions on Information Theory.

[19]  R J Lipton,et al.  DNA solution of hard computational problems. , 1995, Science.

[20]  B. R. McDonald Finite Rings With Identity , 1974 .

[21]  P D Kaplan,et al.  DNA solution of the maximal clique problem. , 1997, Science.

[22]  B. R. McDonald,et al.  Finite local rings , 1973 .

[23]  Arkadii G. D'yachkov,et al.  DNA codes for additive stem similarity , 2009, Probl. Inf. Transm..

[24]  James L. Massey Reversible Codes , 1964, Inf. Control..

[25]  Arkadii G. D'yachkov,et al.  Free Energy Gap and Statistical Thermodynamic Fidelity of DNA Codes , 2007, J. Comput. Biol..

[26]  Richard J. Lipton,et al.  Breaking DES using a molecular computer , 1995, DNA Based Computers.

[27]  J. Doye,et al.  Sequence-dependent thermodynamics of a coarse-grained DNA model. , 2012, The Journal of chemical physics.

[28]  Tetsunao Matsuta,et al.  国際会議開催報告:2013 IEEE International Symposium on Information Theory , 2013 .

[29]  Ronald W. Davis,et al.  Quantitative phenotypic analysis of yeast deletion mutants using a highly parallel molecular bar–coding strategy , 1996, Nature Genetics.

[30]  T. Aaron Gulliver,et al.  MDS and self-dual codes over rings , 2012, Finite Fields Their Appl..

[31]  Pavel A. Vilenkin,et al.  New results on DNA codes , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[32]  Scott White,et al.  Reverse-Complement Similarity Codes , 2006, GTIT-C.

[33]  Bahattin Yildiz,et al.  Cyclic codes over F2[u]/(u4-1) and applications to DNA codes , 2012, Comput. Math. Appl..

[34]  Craig Huneke,et al.  Commutative Algebra I , 2012 .