On the Randomized Construction of the Delaunay Tree

The Delaunay tree is a hierarchical data structure which is defined from the Delaunay triangulation and, roughly speaking, represents a triangulation as a hierarchy of balls. It allows a smidynamic construction of the Delaunay triangulation of a finite set of n points in any dimension. In this paper, we prove that a randomized construction of the Delaunay tree (and, thus, of the Delaunay triangulation) can be done in O(n log n) expected time in the plane and in O(n⌈d2⌉) expected time in d-dimensional space. These results are optimal for fixed d. The algorithm is extremely simple and experimental results are given.

[1]  Jean-Daniel Boissonnat,et al.  The hierarchical representation of objects: the Delaunay tree , 1986, SCG '86.

[2]  Mariette Yvinec,et al.  Applications of random sampling to on-line algorithms in computational geometry , 1992, Discret. Comput. Geom..

[3]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[4]  Kenneth L. Clarkson,et al.  Applications of random sampling in computational geometry, II , 1988, SCG '88.

[5]  Franz Aurenhammer,et al.  Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.

[6]  Robin Sibson,et al.  Computing Dirichlet Tessellations in the Plane , 1978, Comput. J..

[7]  Rex A. Dwyer Higher-dimensional voronoi diagrams in linear expected time , 1991, Discret. Comput. Geom..

[8]  Olivier Devillers,et al.  Fully Dynamic Delaunay Triangulation in Logarithmic Expected Time Per Operation , 1991, Comput. Geom..

[9]  Steven Fortune,et al.  A sweepline algorithm for Voronoi diagrams , 1986, SCG '86.

[10]  Kurt Mehlhorn,et al.  On the construction of abstract voronoi diagrams , 1990, STACS.

[11]  Olivier Devillers,et al.  Fully Dynamic Delaunay Triangulation in Logarithmic Expected Time Per Operation , 1992, Comput. Geom..

[12]  F. P. Preparata,et al.  Convex hulls of finite sets of points in two and three dimensions , 1977, CACM.

[13]  Leonidas J. Guibas,et al.  Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.

[14]  Der-Tsai Lee On k-Nearest Neighbor Voronoi Diagrams in the Plane , 1982, IEEE Transactions on Computers.

[15]  V. Klee On the complexity ofd- dimensional Voronoi diagrams , 1979 .

[16]  Leonidas J. Guibas,et al.  Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.

[17]  M. Iri,et al.  Practical use of Bucketing Techniques in Computational Geometry , 1985 .

[18]  Adrian Bowyer,et al.  Computing Dirichlet Tessellations , 1981, Comput. J..

[19]  Ketan Mulmuley On obstructions in relation to a fixed viewpoint , 1989, 30th Annual Symposium on Foundations of Computer Science.