MT measurements in the western part of the Paleoproterozoic Skellefte Ore District, Northern Sweden: a contribution to an integrated geophysical study

[1]  L. Cagniard Basic theory of the magneto-telluric method of geophysical prospecting , 1953 .

[2]  H. Wiese Geomagnetische Tiefentellurik Teil II: Die Streichrichtung der untergrundstrukturen des elektrischen Widerstandes, erschlossen aus geomagnetischen Variationen , 1962 .

[3]  C. Swift,et al.  A magnetotelluric investigation of an electrical conductivity anomaly in the southwestern United States , 1967 .

[4]  Ulrich Schmucker,et al.  Anomalies of geomagnetic variations in the Southwestern United States , 1970 .

[5]  T. D. Gamble magnetotellurics with a remote reference , 1979 .

[6]  John Clarke,et al.  Magnetotellurics with a remote magnetic reference , 1979 .

[7]  B. Lundberg Aspects of the geology of the Skellefte field, northern Sweden , 1980 .

[8]  C. M. Swift,et al.  On determining electrical characteristics of the deep layers of the Earth's crust , 1986 .

[9]  R. Roberts,et al.  Magnetotelluric strike rules , 1987 .

[10]  P. Hamilton,et al.  Jörn: An early proterozoic intrusive complex in a volcanic-arc environment, north sweden , 1987 .

[11]  T. M. Rasmussen,et al.  Magnetotellurics along the Fennoscandian Long Range profile , 1987 .

[12]  P. Heikkinen,et al.  Evidence for early Proterozoic plate tectonics from seismic reflection profiles in the Baltic shield , 1990, Nature.

[13]  U. Bergström,et al.  Metallogeny and tectonic evolution of the Early Proterozoic Skellefte district, northern Sweden , 1992 .

[14]  T. Korja Electrical conductivity distribution of the lithosphere in the central Fennoscandian Shield , 1993 .

[15]  A. Jones Electromagnetic images of modern and ancient subduction zones , 1993 .

[16]  D. Eaton,et al.  Seismic imaging of massive sulfide deposits; Part II, Reflection seismic profiling , 1996 .

[17]  R. Kurtz,et al.  Electrical conductivity and Paleo‐Proterozoic foredeeps , 1996 .

[18]  P. Weihed,et al.  Setting of Zn-Cu-Au-Ag massive sulfide deposits in the evolution and facies architecture of a 1.9 Ga marine volcanic arc, Skellefte District, Sweden , 1996 .

[19]  R. Carbonell,et al.  A multidisciplinary geophysical study in the Betic chain (southern Iberia Peninsula) , 1998 .

[20]  A. Jones WAVES OF THE FUTURE : SUPERIOR INFERENCES FROM COLLOCATED SEISMIC AND ELECTROMAGNETIC EXPERIMENTS , 1998 .

[21]  Gary D. Egbert,et al.  An efficient data-subspace inversion method for 2-D magnetotelluric data , 2000 .

[22]  R. Rutland,et al.  Nature of a major tectonic discontinuity in the Svecofennian province of northern Sweden. , 2001 .

[23]  B. Öhlander,et al.  Crustal reflectivity near the Archaean-Proterozoic boundary in northern Sweden and implications for the tectonic evolution of the area , 2002 .

[24]  K. Billström,et al.  Relationship between 1.90–1.85 Ga accretionary processes and 1.82–1.80 Ga oblique subduction at the Karelian craton margin, Fennoscandian Shield , 2002 .

[25]  M. Engels,et al.  Crustal conductivity in Fennoscandia—a compilation of a database on crustal conductance in the Fennoscandian Shield , 2002 .

[26]  O. Ritter,et al.  A high-resolution magnetotelluric survey of the Iapetus Suture Zone in southwest Scotland , 2003 .

[27]  M. Yu. Smirnov,et al.  Magnetotelluric data processing with a robust statistical procedure having a high breakdown point , 2003 .

[28]  C. Thurber,et al.  Geophysical images of the creeping segment of the San Andreas fault: implications for the role of crustal fluids in the earthquake process , 2004 .

[29]  J. Melgarejo,et al.  Electromagnetic imaging of Variscan crustal structures in SW Iberia: the role of interconnected graphite , 2004 .

[30]  G. Marquis,et al.  Crustal rheology of the Himalaya and Southern Tibet inferred from magnetotelluric data , 2005, Nature.

[31]  T. Barrett,et al.  The Palaeoproterozoic Kristineberg VMS deposit, Skellefte district, northern Sweden, part I: geology , 2005 .

[32]  P. Bedrosian,et al.  Characterizing a large shear‐zone with seismic and magnetotelluric methods: The case of the Dead Sea Transform , 2005 .

[33]  L. Pedersen,et al.  Routine 2D inversion of Magnetotelluric data using the determinant of the impedance tensor , 2005 .

[34]  W. Maclean,et al.  The Palaeoproterozoic Kristineberg VMS deposit, Skellefte district, northern Sweden. Part II: chemostratigraphy and alteration , 2005 .

[35]  Johiris I. Rodríguez-Tablante,et al.  Reflection Seismic Investigations in the Western Part of the Paleoproterozoic VHMS-Bearing Skellefte District, Northern Sweden , 2006 .

[36]  Johiris I. Rodríguez-Tablante,et al.  Seismic imaging and potential field modelling to delineate structures hosting VHMS deposits in the Skellefte Ore District, northern Sweden , 2006 .

[37]  Graham Heinson,et al.  Magnetotelluric evidence for a deep-crustal mineralizing system beneath the Olympic Dam iron oxide copper-gold deposit, southern Australia , 2006 .

[38]  Pär Weihed,et al.  Regional structural profiles in the western part of the Palaeoproterozoic Skellefte Ore District, northern Sweden , 2007 .

[39]  L. Pedersen,et al.  Structure of the Central Scandinavian Caledonides and the underlying Precambrian basement, new constraints from magnetotellurics , 2008 .

[40]  H. Bibby,et al.  Three‐dimensional modelling of magnetotelluric data from the Rotokawa geothermal field, Taupo Volcanic Zone, New Zealand , 2008 .

[41]  Alireza Malehmir,et al.  The Paleoproterozoic Kristineberg mining area, northern Sweden: Results from integrated 3D geophysical and geologic modeling, and implications for targeting ore deposits , 2009 .

[42]  L. B. Pedersen,et al.  Magnetotelluric measurements across the Sorgenfrei-Tornquist Zone in southern Sweden and Denmark , 2009 .