MT measurements in the western part of the Paleoproterozoic Skellefte Ore District, Northern Sweden: a contribution to an integrated geophysical study
暂无分享,去创建一个
Alireza Malehmir | Ari Tryggvason | A. Tryggvason | A. Malehmir | L. Pedersen | Juliane Hübert | Maxim Smirnow | Laust B. Pedersen | J. Hübert | Maxim Smirnow | M. Smirnow
[1] L. Cagniard. Basic theory of the magneto-telluric method of geophysical prospecting , 1953 .
[2] H. Wiese. Geomagnetische Tiefentellurik Teil II: Die Streichrichtung der untergrundstrukturen des elektrischen Widerstandes, erschlossen aus geomagnetischen Variationen , 1962 .
[3] C. Swift,et al. A magnetotelluric investigation of an electrical conductivity anomaly in the southwestern United States , 1967 .
[4] Ulrich Schmucker,et al. Anomalies of geomagnetic variations in the Southwestern United States , 1970 .
[5] T. D. Gamble. magnetotellurics with a remote reference , 1979 .
[6] John Clarke,et al. Magnetotellurics with a remote magnetic reference , 1979 .
[7] B. Lundberg. Aspects of the geology of the Skellefte field, northern Sweden , 1980 .
[8] C. M. Swift,et al. On determining electrical characteristics of the deep layers of the Earth's crust , 1986 .
[9] R. Roberts,et al. Magnetotelluric strike rules , 1987 .
[10] P. Hamilton,et al. Jörn: An early proterozoic intrusive complex in a volcanic-arc environment, north sweden , 1987 .
[11] T. M. Rasmussen,et al. Magnetotellurics along the Fennoscandian Long Range profile , 1987 .
[12] P. Heikkinen,et al. Evidence for early Proterozoic plate tectonics from seismic reflection profiles in the Baltic shield , 1990, Nature.
[13] U. Bergström,et al. Metallogeny and tectonic evolution of the Early Proterozoic Skellefte district, northern Sweden , 1992 .
[14] T. Korja. Electrical conductivity distribution of the lithosphere in the central Fennoscandian Shield , 1993 .
[15] A. Jones. Electromagnetic images of modern and ancient subduction zones , 1993 .
[16] D. Eaton,et al. Seismic imaging of massive sulfide deposits; Part II, Reflection seismic profiling , 1996 .
[17] R. Kurtz,et al. Electrical conductivity and Paleo‐Proterozoic foredeeps , 1996 .
[18] P. Weihed,et al. Setting of Zn-Cu-Au-Ag massive sulfide deposits in the evolution and facies architecture of a 1.9 Ga marine volcanic arc, Skellefte District, Sweden , 1996 .
[19] R. Carbonell,et al. A multidisciplinary geophysical study in the Betic chain (southern Iberia Peninsula) , 1998 .
[20] A. Jones. WAVES OF THE FUTURE : SUPERIOR INFERENCES FROM COLLOCATED SEISMIC AND ELECTROMAGNETIC EXPERIMENTS , 1998 .
[21] Gary D. Egbert,et al. An efficient data-subspace inversion method for 2-D magnetotelluric data , 2000 .
[22] R. Rutland,et al. Nature of a major tectonic discontinuity in the Svecofennian province of northern Sweden. , 2001 .
[23] B. Öhlander,et al. Crustal reflectivity near the Archaean-Proterozoic boundary in northern Sweden and implications for the tectonic evolution of the area , 2002 .
[24] K. Billström,et al. Relationship between 1.90–1.85 Ga accretionary processes and 1.82–1.80 Ga oblique subduction at the Karelian craton margin, Fennoscandian Shield , 2002 .
[25] M. Engels,et al. Crustal conductivity in Fennoscandia—a compilation of a database on crustal conductance in the Fennoscandian Shield , 2002 .
[26] O. Ritter,et al. A high-resolution magnetotelluric survey of the Iapetus Suture Zone in southwest Scotland , 2003 .
[27] M. Yu. Smirnov,et al. Magnetotelluric data processing with a robust statistical procedure having a high breakdown point , 2003 .
[28] C. Thurber,et al. Geophysical images of the creeping segment of the San Andreas fault: implications for the role of crustal fluids in the earthquake process , 2004 .
[29] J. Melgarejo,et al. Electromagnetic imaging of Variscan crustal structures in SW Iberia: the role of interconnected graphite , 2004 .
[30] G. Marquis,et al. Crustal rheology of the Himalaya and Southern Tibet inferred from magnetotelluric data , 2005, Nature.
[31] T. Barrett,et al. The Palaeoproterozoic Kristineberg VMS deposit, Skellefte district, northern Sweden, part I: geology , 2005 .
[32] P. Bedrosian,et al. Characterizing a large shear‐zone with seismic and magnetotelluric methods: The case of the Dead Sea Transform , 2005 .
[33] L. Pedersen,et al. Routine 2D inversion of Magnetotelluric data using the determinant of the impedance tensor , 2005 .
[34] W. Maclean,et al. The Palaeoproterozoic Kristineberg VMS deposit, Skellefte district, northern Sweden. Part II: chemostratigraphy and alteration , 2005 .
[35] Johiris I. Rodríguez-Tablante,et al. Reflection Seismic Investigations in the Western Part of the Paleoproterozoic VHMS-Bearing Skellefte District, Northern Sweden , 2006 .
[36] Johiris I. Rodríguez-Tablante,et al. Seismic imaging and potential field modelling to delineate structures hosting VHMS deposits in the Skellefte Ore District, northern Sweden , 2006 .
[37] Graham Heinson,et al. Magnetotelluric evidence for a deep-crustal mineralizing system beneath the Olympic Dam iron oxide copper-gold deposit, southern Australia , 2006 .
[38] Pär Weihed,et al. Regional structural profiles in the western part of the Palaeoproterozoic Skellefte Ore District, northern Sweden , 2007 .
[39] L. Pedersen,et al. Structure of the Central Scandinavian Caledonides and the underlying Precambrian basement, new constraints from magnetotellurics , 2008 .
[40] H. Bibby,et al. Three‐dimensional modelling of magnetotelluric data from the Rotokawa geothermal field, Taupo Volcanic Zone, New Zealand , 2008 .
[41] Alireza Malehmir,et al. The Paleoproterozoic Kristineberg mining area, northern Sweden: Results from integrated 3D geophysical and geologic modeling, and implications for targeting ore deposits , 2009 .
[42] L. B. Pedersen,et al. Magnetotelluric measurements across the Sorgenfrei-Tornquist Zone in southern Sweden and Denmark , 2009 .