Massive single-cell RNA-seq analysis and imputation via deep learning

Recent advances in large-scale RNA-seq enable fine-grained characterization of phenotypically distinct cellular states within heterogeneous tissues. We present scScope, a scalable deep-learning based approach that can accurately and rapidly identify cell-type composition from millions of noisy single-cell gene-expression profiles.

[1]  Bo Wang,et al.  Visualization and analysis of single-cell RNA-seq data by kernel-based similarity learning , 2016, Nature Methods.

[2]  Mingfeng Li,et al.  Early emergence of cortical interneuron diversity in the mouse embryo , 2018, Science.

[3]  Richard A. Muscat,et al.  Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding , 2018, Science.

[4]  Aleksandra A. Kolodziejczyk,et al.  The technology and biology of single-cell RNA sequencing. , 2015, Molecular cell.

[5]  P. Kharchenko,et al.  Bayesian approach to single-cell differential expression analysis , 2014, Nature Methods.

[6]  Rona S. Gertner,et al.  Single cell RNA Seq reveals dynamic paracrine control of cellular variation , 2014, Nature.

[7]  H. Swerdlow,et al.  Large-scale simultaneous measurement of epitopes and transcriptomes in single cells , 2017, Nature Methods.

[8]  T. Caliński,et al.  A dendrite method for cluster analysis , 1974 .

[9]  S. Dudoit,et al.  A general and flexible method for signal extraction from single-cell RNA-seq data , 2018, Nature Communications.

[10]  Nir Yosef,et al.  Bayesian Inference for a Generative Model of Transcriptome Profiles from Single-cell RNA Sequencing , 2018, bioRxiv.

[11]  M. Eisenstein Startups use short-read data to expand long-read sequencing market , 2015, Nature Biotechnology.

[12]  P. Reddien,et al.  Fundamentals of planarian regeneration. , 2004, Annual review of cell and developmental biology.

[13]  M. Cugmas,et al.  On comparing partitions , 2015 .

[14]  A. Regev,et al.  Efficient Generation of Transcriptomic Profiles by Random Composite Measurements , 2017, Cell.

[15]  William M. Rand,et al.  Objective Criteria for the Evaluation of Clustering Methods , 1971 .

[16]  R. Masland,et al.  The Major Cell Populations of the Mouse Retina , 1998, The Journal of Neuroscience.

[17]  S. Orkin,et al.  Mapping the Mouse Cell Atlas by Microwell-Seq , 2018, Cell.

[18]  W. Koh,et al.  Single-cell genome sequencing: current state of the science , 2016, Nature Reviews Genetics.

[19]  Fabian J. Theis,et al.  Single-cell RNA-seq denoising using a deep count autoencoder , 2018, Nature Communications.

[20]  A. Oshlack,et al.  Splatter: simulation of single-cell RNA sequencing data , 2017, Genome Biology.

[21]  Yarden Katz,et al.  A single-cell survey of the small intestinal epithelium , 2017, Nature.

[22]  Sean C. Bendall,et al.  Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like Cells that Correlate with Prognosis , 2015, Cell.

[23]  M. Schaub,et al.  SC3 - consensus clustering of single-cell RNA-Seq data , 2016, Nature Methods.

[24]  Yoshua. Bengio,et al.  Learning Deep Architectures for AI , 2007, Found. Trends Mach. Learn..

[25]  E. Pierson,et al.  ZIFA: Dimensionality reduction for zero-inflated single-cell gene expression analysis , 2015, Genome Biology.

[26]  Kevin R. Moon,et al.  Recovering Gene Interactions from Single-Cell Data Using Data Diffusion , 2018, Cell.

[27]  Grace X. Y. Zheng,et al.  Massively parallel digital transcriptional profiling of single cells , 2016, Nature Communications.

[28]  C. Wijmenga,et al.  Reconstruction of a functional human gene network, with an application for prioritizing positional candidate genes. , 2006, American journal of human genetics.

[29]  A. Saliba,et al.  Single-cell RNA-seq: advances and future challenges , 2014, Nucleic acids research.

[30]  Evan Z. Macosko,et al.  Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets , 2015, Cell.

[31]  Paul Hoffman,et al.  Integrating single-cell transcriptomic data across different conditions, technologies, and species , 2018, Nature Biotechnology.

[32]  Pascal Vincent,et al.  Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion , 2010, J. Mach. Learn. Res..

[33]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[34]  Staci A. Sorensen,et al.  Adult Mouse Cortical Cell Taxonomy Revealed by Single Cell Transcriptomics , 2016 .