Fast-growth Thermodynamic Integration∶ Results for Sodium Ion Hydration

Slow-growth thermodynamic integration (TI) is a simple method to calculate free energy differences in fluid and macromolecular systems. A recently derived identity (Jarzynski, C. Phys. Rev. Lett. 78, 2690, 1997) permits the calculation of free energy differences from repeated TIs at arbitrary growth rates. Here, I investigate the quantitative accuracy of the resulting 'fast-growth' TI for the charging of a sodium ion in water. To estimate the corresponding free energy of hydration, I use simple expressions involving the means and variances of the non-equilibrium work.

[1]  G. Hummer Fast-growth thermodynamic integration: Error and efficiency analysis , 2001 .

[2]  K. Schulten,et al.  Reconstructing Potentials of Mean Force through Time Series Analysis of Steered Molecular Dynamics Simulations , 1999 .

[3]  G. Hummer,et al.  Molecular Theories and Simulation of Ions and Polar Molecules in Water , 1998, physics/9806023.

[4]  G. Hummer,et al.  Free energy of hydration of a molecular ionic solute: Tetramethylammonium ion , 1998 .

[5]  B. Berne,et al.  Reply to Comment on “Electrostatic Potentials and Free Energies of Solvation of Polar and Charged Molecules” , 1998 .

[6]  G. Crooks Nonequilibrium Measurements of Free Energy Differences for Microscopically Reversible Markovian Systems , 1998 .

[7]  G. Hummer,et al.  Ion sizes and finite-size corrections for ionic-solvation free energies , 1997, physics/9709042.

[8]  Gerhard Hummer,et al.  Multistate Gaussian Model for Electrostatic Solvation Free Energies , 1997 .

[9]  Ruth M. Lynden-Bell,et al.  From hydrophobic to hydrophilic behaviour: A simulation study of solvation entropy and free energy of simple solutes , 1997 .

[10]  C. Jarzynski Equilibrium free-energy differences from nonequilibrium measurements: A master-equation approach , 1997, cond-mat/9707325.

[11]  Ronald M. Levy,et al.  On Finite-Size Corrections to the Free Energy of Ionic Hydration , 1997 .

[12]  H. Ashbaugh,et al.  Effects of long-range electrostatic potential truncation on the free energy of ionic hydration , 1997 .

[13]  Martin Karplus,et al.  Cumulant expansion of the free energy: Application to free energy derivatives and component analysis , 1996 .

[14]  C. Jarzynski Nonequilibrium Equality for Free Energy Differences , 1996, cond-mat/9610209.

[15]  Gerhard Hummer,et al.  Calculation of free‐energy differences from computer simulations of initial and final states , 1996 .

[16]  Peter A. Kollman,et al.  Alternative approaches to potential of mean force calculations: Free energy perturbation versus thermodynamic integration. Case study of some representative nonpolar interactions , 1996, J. Comput. Chem..

[17]  S. Kalko,et al.  On the effects of truncating the electrostatic interactions: Free energies of ion hydration , 1996 .

[18]  Alan E. Mark,et al.  Estimating the Relative Free Energy of Different Molecular States with Respect to a Single Reference State , 1996 .

[19]  Huan‐Xiang Zhou,et al.  Microscopic formulation of Marcus’ theory of electron transfer , 1995 .

[20]  G. Hummer,et al.  On the free energy of ionic hydration , 1995, chem-ph/9505005.

[21]  R. Levy,et al.  On finite‐size effects in computer simulations using the Ewald potential , 1995, chem-ph/9505001.

[22]  G. Hummer,et al.  Ion pair potentials-of-mean-force in water , 1994, chem-ph/9404001.

[23]  B. Berne,et al.  The Aqueous Solvation of Water: A Comparison of Continuum Methods with Molecular Dynamics , 1994, chem-ph/9403006.

[24]  William P. Reinhardt,et al.  A finite‐time variational method for determining optimal paths and obtaining bounds on free energy changes from computer simulations , 1993 .

[25]  Peter A. Kollman,et al.  FREE ENERGY CALCULATIONS : APPLICATIONS TO CHEMICAL AND BIOCHEMICAL PHENOMENA , 1993 .

[26]  G. King,et al.  Calculation of electrostatic free energy differences with a time-saving approximate method , 1993 .

[27]  A. Warshel,et al.  Calculations of antibody-antigen interactions: microscopic and semi-microscopic evaluation of the free energies of binding of phosphorylcholine analogs to McPC603. , 1992, Protein engineering.

[28]  Jan Hermans,et al.  Simple analysis of noise and hysteresis in (slow-growth) free energy simulations , 1991 .

[29]  Ronald M. Levy,et al.  Gaussian fluctuation formula for electrostatic free‐energy changes in solution , 1991 .

[30]  Robert H. Wood,et al.  Systematic errors in free energy perturbation calculations due to a finite sample of configuration space: sample-size hysteresis , 1991 .

[31]  Robert H. Wood,et al.  Estimation of errors in free energy calculations due to the lag between the hamiltonian and the system configuration , 1991 .

[32]  J. Andrew McCammon,et al.  Free energy difference calculations by thermodynamic integration: Difficulties in obtaining a precise value , 1991 .

[33]  J. Åqvist,et al.  Ion-water interaction potentials derived from free energy perturbation simulations , 1990 .

[34]  Bhyravabhotla Jayaram,et al.  Free energy calculations of ion hydration: an analysis of the Born model in terms of microscopic simulations , 1989 .

[35]  Peter A. Kollman,et al.  A new method for carrying out free energy perturbation calculations: Dynamically modified windows , 1989 .

[36]  R. A. Kuharski,et al.  Molecular model for aqueous ferrous–ferric electron transfer , 1988 .

[37]  A. Warshel,et al.  Microscopic examination of free-energy relationships for electron transfer in polar solvents , 1987 .

[38]  T. Straatsma,et al.  Free energy of hydrophobic hydration: A molecular dynamics study of noble gases in water , 1986 .

[39]  R. Zwanzig High‐Temperature Equation of State by a Perturbation Method. I. Nonpolar Gases , 1954 .

[40]  J. Kirkwood Order and Disorder in Binary Solid Solutions , 1938 .

[41]  W. Opęchowski On the exchange interaction in magnetic crystals , 1937 .

[42]  Jens Ulstrup,et al.  Electron Transfer in Chemistry and Biology: An Introduction to the Theory , 1999 .

[43]  R. Levy,et al.  Computer simulations with explicit solvent: recent progress in the thermodynamic decomposition of free energies and in modeling electrostatic effects. , 1998, Annual review of physical chemistry.

[44]  Wilfred F. van Gunsteren,et al.  Predictions of free energy differences from a single simulation of the initial state , 1994 .

[45]  G. Hummer,et al.  Correlations and free energies in restricted primitive model descriptions of electrolytes , 1993 .

[46]  H. Berendsen,et al.  THERMODYNAMICS OF CAVITY FORMATION IN WATER - A MOLECULAR-DYNAMICS STUDY , 1982 .

[47]  H. Berendsen,et al.  Interaction Models for Water in Relation to Protein Hydration , 1981 .