Evaluation of structural and electrical properties of multicomponent spinel oxide thin films deposited via spray pyrolysis technique

[1]  Yen-Hsun Su,et al.  Stepwise Evolution of Photocatalytic Spinel-Structured (Co,Cr,Fe,Mn,Ni)3O4 High Entropy Oxides from First-Principles Calculations to Machine Learning , 2021, Crystals.

[2]  P. Jasiński,et al.  Improvement of Oxygen Electrode Performance of Intermediate Temperature Solid Oxide Cells by Spray Pyrolysis Deposited Active Layers , 2021, Advanced Materials Interfaces.

[3]  Shao‐hua Luo,et al.  Spinel-structured high entropy oxide (FeCoNiCrMn)3O4 as anode towards superior lithium storage performance , 2020 .

[4]  T. Nagata,et al.  Exploring the First High-Entropy Thin Film Libraries: Composition Spread-Controlled Crystalline Structure. , 2020, ACS combinatorial science.

[5]  J. Yeh,et al.  In operando synchrotron X-ray studies of a novel spinel (Ni0.2Co0.2Mn0.2Fe0.2Ti0.2)3O4 high-entropy oxide for energy storage applications , 2020, Journal of Materials Chemistry A.

[6]  H. Hahn,et al.  High entropy oxides: The role of entropy, enthalpy and synergy , 2020 .

[7]  Shengjiong Yang,et al.  Sol-Gel Synthesis of Spherical Mesoporous High-Entropy-Oxides. , 2020, ACS applied materials & interfaces.

[8]  E. R. Losilla,et al.  Highly oriented and fully dense CGO films prepared by spray-pyrolysis and different precursor salts , 2020 .

[9]  Hong Chen,et al.  A new spinel high-entropy oxide (Mg0.2Ti0.2Zn0.2Cu0.2Fe0.2)3O4 with fast reaction kinetics and excellent stability as an anode material for lithium ion batteries , 2020, RSC advances.

[10]  K. Kuramoto,et al.  A new class of spinel high-entropy oxides with controllable magnetic properties , 2020 .

[11]  Yanyong Wang,et al.  Low-temperature synthesis of small-sized high-entropy oxides for water oxidation , 2019, Journal of Materials Chemistry A.

[12]  K. Kuramoto,et al.  Facile synthesis and ferrimagnetic property of spinel (CoCrFeMnNi)3O4 high-entropy oxide nanocrystalline powder , 2019, Journal of Molecular Structure.

[13]  P. Jasiński,et al.  Deposition and Electrical and Structural Properties of La0.6Sr0.4CoO3 Thin Films for Application in High-Temperature Electrochemical Cells , 2019, Journal of Electronic Materials.

[14]  P. Jasiński,et al.  Evaluation of Praseodymium and Gadolinium Doped Ceria as a Possible Barrier Layer Material for Solid Oxide Cells , 2019, ECS Transactions.

[15]  Z. Grzesik,et al.  Defect structure and transport properties in (Co,Cu,Mg,Ni,Zn)O high entropy oxide , 2019, Journal of the European Ceramic Society.

[16]  K. Wiik,et al.  Thermal expansion and electrical conductivity of Fe and Cu doped MnCo2O4 spinel , 2018, Solid State Ionics.

[17]  P. Jasiński,et al.  Low temperature deposition of dense MnCo2O4 protective coatings for steel interconnects of solid oxide cells , 2018, Journal of the European Ceramic Society.

[18]  Manfred Martin,et al.  Synthesis and microstructure of the (Co,Cr,Fe,Mn,Ni) 3 O 4 high entropy oxide characterized by spinel structure , 2018 .

[19]  P. Hendriksen,et al.  Microstructure and Electrical Properties of Fe,Cu Substituted (Co,Mn)3O4 Thin Films , 2017 .

[20]  Zhichuan J. Xu,et al.  Cations in Octahedral Sites: A Descriptor for Oxygen Electrocatalysis on Transition‐Metal Spinels , 2017, Advanced materials.

[21]  P. Jasiński,et al.  THE ROLE OF THIN FUNCTIONAL LAYERS IN SOLID OXIDE FUEL CELLS , 2016 .

[22]  Jacob L. Jones,et al.  Entropy-stabilized oxides , 2015, Nature Communications.

[23]  A. Wokaun,et al.  Crystallization of zirconia based thin films. , 2015, Physical chemistry chemical physics : PCCP.

[24]  E. Djurado,et al.  Fabrication of Mn1.5Co1.5O4 by Electrostatic Spray Deposition for Application as Protective Coating on Alloy Interconnects for Solid Oxide Fuel Cells , 2015 .

[25]  J. Martynczuk,et al.  Crystallization and Microstructure of Yttria‐Stabilized‐Zirconia Thin Films Deposited by Spray Pyrolysis , 2011 .

[26]  J. Martynczuk,et al.  Impact of substrate material and annealing conditions on the microstructure and chemistry of yttria , 2011 .

[27]  Fujio Izumi,et al.  VESTA: a three-dimensional visualization system for electronic and structural analysis , 2008 .

[28]  L. Gauckler,et al.  Thin films for micro solid oxide fuel cells , 2007 .

[29]  L. Gauckler,et al.  Microstrain and self-limited grain growth in nanocrystalline ceria ceramics , 2006 .

[30]  L. Gauckler,et al.  Thin Film Deposition Using Spray Pyrolysis , 2005 .

[31]  A. L. Patterson The Scherrer Formula for X-Ray Particle Size Determination , 1939 .

[32]  R. Martinez Lopez,et al.  Journal of the European Ceramic Society , 2015 .

[33]  L. Gauckler,et al.  Initial stages of deposition and film formation during spray pyrolysis — Nickel oxide, cerium gadolinium oxide and mixtures thereof , 2009 .

[34]  D. Perednis Thin film deposition by spray pyrolysis and the application in solid oxide fuel cells , 2003 .