Resource Separation in Dynamic Logic of Propositional Assignments

We extend dynamic logic of propositional assignments by adding an operator of parallel composition that is inspired by separation logics. We provide an axiomatisation via reduction axioms, thereby establishing decidability. We also prove that the complexity of both the model checking and the satisfiability problem stay in PSPACE.

[1]  Joseph Boudou,et al.  Iteration-free PDL with storing, recovering and parallel composition: a complete axiomatization , 2018, J. Log. Comput..

[2]  Peter W. O'Hearn,et al.  Resources, Concurrency and Local Reasoning , 2004, CONCUR.

[3]  Christoph Scheben,et al.  Information Flow Analysis , 2016, Deductive Software Verification.

[4]  Andreas Herzig,et al.  A Simple Separation Logic , 2013, WoLLIC.

[5]  Robert Goldblatt,et al.  Parallel action: Concurrent dynamic logic with independent modalities , 1992, Stud Logica.

[6]  Stephen D. Brookes,et al.  A Semantics for Concurrent Separation Logic , 2004, CONCUR.

[7]  Andreas Herzig,et al.  Dynamic logic of parallel propositional assignments and its applications to planning , 2019, IJCAI.

[8]  Andreas Herzig,et al.  Belief Change Operations: A Short History of Nearly Everything, Told in Dynamic Logic of Propositional Assignments , 2014, KR.

[9]  Andreas Herzig,et al.  DL-PA and DCL-PC: model checking and satisfiability problem are indeed in PSPACE , 2014, ArXiv.

[10]  Mario R. F. Benevides,et al.  Propositional Dynamic Logic with Storing, Recovering and Parallel Composition , 2011, LSFA.

[11]  Dimiter Vakarelov,et al.  PDL with intersection of programs: a complete axiomatization , 2003, J. Appl. Non Class. Logics.

[12]  Andreas Herzig,et al.  On the revision of planning tasks , 2014, ECAI.

[13]  David Peleg,et al.  Concurrent dynamic logic , 1987, JACM.

[14]  Mario R. F. Benevides,et al.  PDL for structured data: a graph-calculus approach , 2014, Log. J. IGPL.

[15]  Peter W. O'Hearn,et al.  Concurrent separation logic , 2016, SIGL.

[16]  Alain J. Mayer,et al.  The Complexity of PDL with Interleaving , 1996, Theor. Comput. Sci..

[17]  Andreas Herzig,et al.  Belief Merging in Dynamic Logic of Propositional Assignments , 2014, FoIKS.

[18]  Andreas Herzig,et al.  Dynamic Logic of Propositional Assignments: A Well-Behaved Variant of PDL , 2013, 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science.

[19]  Reiner Hähnle,et al.  A Theorem Proving Approach to Analysis of Secure Information Flow , 2005, SPC.

[20]  Jelle Gerbrandy,et al.  Dynamic epistemic logic , 1998 .

[21]  Andreas Herzig,et al.  Judgment Aggregation in Dynamic Logic of Propositional Assignments , 2016 .

[22]  Martin C. Cooper,et al.  A Simple Account of Multi-Agent Epistemic Planning , 2016, ECAI.

[23]  Stephen Brookes A semantics for concurrent separation logic , 2007, Theor. Comput. Sci..

[24]  Nobuko Yoshida,et al.  CONCUR 2004 - Concurrency Theory , 2004, Lecture Notes in Computer Science.

[25]  François Schwarzentruber,et al.  Arbitrary Public Announcement Logic with Mental Programs , 2015, AAMAS.

[26]  Andreas Herzig,et al.  A Dynamic Logic Account of Active Integrity Constraints , 2019, Fundam. Informaticae.

[27]  François Schwarzentruber,et al.  A Succinct Language for Dynamic Epistemic Logic , 2017, AAMAS.