Significantly enhanced electrocatalytic activity of Au25 clusters by single platinum atom doping

[1]  Jiwhan Kim,et al.  Single-Atom Catalysts of Precious Metals for Electrochemical Reactions. , 2018, ChemSusChem.

[2]  Chengzhou Zhu,et al.  Single-Atom Electrocatalysts. , 2017, Angewandte Chemie.

[3]  H. Yang,et al.  Isolation of single Pt atoms in a silver cluster: forming highly efficient silver-based cocatalysts for photocatalytic hydrogen evolution. , 2017, Chemical communications.

[4]  Jinlong Yang,et al.  Crystal and Solution Photoluminescence of MAg24(SR)18 (M = Ag/Pd/Pt/Au) Nanoclusters and Some Implications for the Photoluminescence Mechanisms , 2017 .

[5]  R. Jin,et al.  Atomically Precise Colloidal Metal Nanoclusters and Nanoparticles: Fundamentals and Opportunities. , 2016, Chemical reviews.

[6]  Hiroyuki Asakura,et al.  Stabilizing a Platinum1 Single-Atom Catalyst on Supported Phosphomolybdic Acid without Compromising Hydrogenation Activity. , 2016, Angewandte Chemie.

[7]  Manas R. Parida,et al.  Gold Doping of Silver Nanoclusters: A 26-Fold Enhancement in the Luminescence Quantum Yield. , 2016, Angewandte Chemie.

[8]  N. Zheng,et al.  Atomically Precise Alkynyl-Protected Metal Nanoclusters as a Model Catalyst: Observation of Promoting Effect of Surface Ligands on Catalysis by Metal Nanoparticles. , 2016, Journal of the American Chemical Society.

[9]  Jiwhan Kim,et al.  Single-Atom Catalyst of Platinum Supported on Titanium Nitride for Selective Electrochemical Reactions. , 2016, Angewandte Chemie.

[10]  Manas R. Parida,et al.  Templated Atom-Precise Galvanic Synthesis and Structure Elucidation of a [Ag24Au(SR)18](-) Nanocluster. , 2016, Angewandte Chemie.

[11]  Wei Chen,et al.  Application of Mass Spectrometry in the Synthesis and Characterization of Metal Nanoclusters. , 2015, Analytical chemistry.

[12]  J. Xie,et al.  Recent Advances in the Synthesis and Applications of Ultrasmall Bimetallic Nanoclusters , 2015 .

[13]  H. Häkkinen,et al.  The Role of the Anchor Atom in the Ligand of the Monolayer-Protected Au25(XR)18– Nanocluster , 2015 .

[14]  Y. Yu,et al.  Introducing amphiphilicity to noble metal nanoclusters via phase-transfer driven ion-pairing reaction. , 2015, Journal of the American Chemical Society.

[15]  J. Greeley,et al.  Exceptional size-dependent activity enhancement in the electroreduction of CO2 over Au nanoparticles. , 2014, Journal of the American Chemical Society.

[16]  Ammu Mathew,et al.  Noble Metal Clusters: Applications in Energy, Environment, and Biology , 2014 .

[17]  Konstantin M. Neyman,et al.  Maximum noble-metal efficiency in catalytic materials: atomically dispersed surface platinum. , 2014, Angewandte Chemie.

[18]  S. Zou,et al.  Electrocatalysis of formic acid on palladium and platinum surfaces: from fundamental mechanisms to fuel cell applications. , 2014, Physical chemistry chemical physics : PCCP.

[19]  Q. Jiang,et al.  Revealing the active intermediates in the oxidation of formic acid on Au and Pt(111). , 2014, Chemistry.

[20]  Wei Chen,et al.  Charge state-dependent catalytic activity of [Au(25)(SC(12)H(25))18] nanoclusters for the two-electron reduction of dioxygen to hydrogen peroxide. , 2014, Chemical communications.

[21]  Yong-Wei Zhang,et al.  Destabilization of Gold Clusters for Controlled Nanosynthesis: From Clusters to Polyhedra , 2014, Advanced materials.

[22]  T. Ghanty,et al.  Structural and Chemical Properties of Subnanometer-Sized Bimetallic Au19Pt Cluster , 2014 .

[23]  Peng Li,et al.  Crystal structure of selenolate-protected Au24(SeR)20 nanocluster. , 2014, Journal of the American Chemical Society.

[24]  G. Henkelman,et al.  Efficient electrocatalytic oxidation of formic acid using Au@Pt dendrimer-encapsulated nanoparticles. , 2013, Journal of the American Chemical Society.

[25]  Rongchao Jin,et al.  Atomically precise gold nanoclusters as new model catalysts. , 2013, Accounts of chemical research.

[26]  Wei Chen,et al.  Nano-PtPd Cubes on Graphene Exhibit Enhanced Activity and Durability in Methanol Electrooxidation after CO Stripping–Cleaning , 2013 .

[27]  R. Jin,et al.  Dopant Location, Local Structure, and Electronic Properties of Au24Pt(SR)18 Nanoclusters , 2012 .

[28]  R. Gil,et al.  Monoplatinum doping of gold nanoclusters and catalytic application. , 2012, Journal of the American Chemical Society.

[29]  Wei Chen,et al.  Sub-nanometre sized metal clusters: from synthetic challenges to the unique property discoveries. , 2012, Chemical Society reviews.

[30]  Fan Cai,et al.  Carbon-supported PtAu alloy nanoparticle catalysts for enhanced electrocatalytic oxidation of formic acid , 2011 .

[31]  T. Ikeshoji,et al.  The role of bridge-bonded adsorbed formate in the electrocatalytic oxidation of formic acid on platinum. , 2011, Angewandte Chemie.

[32]  N. A. Romero,et al.  Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[33]  W. Schreiner,et al.  Dodecanethiol-Stabilized Platinum Nanoparticles Obtained by a Two-Phase Method: Synthesis, Characterization, Mechanism of Formation, and Electrocatalytic Properties , 2010 .

[34]  Wei Chen,et al.  Oxygen electroreduction catalyzed by gold nanoclusters: strong core size effects. , 2009, Angewandte Chemie.

[35]  H. Baltruschat,et al.  Cyclic voltammetry, FTIRS, and DEMS study of the electrooxidation of carbon monoxide, formic acid, and methanol on cyanide-modified Pt(111) electrodes. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[36]  K. Sasaki,et al.  Stabilization of Platinum Oxygen-Reduction Electrocatalysts Using Gold Clusters , 2007, Science.

[37]  A. Cuesta,et al.  At least three contiguous atoms are necessary for CO formation during methanol electrooxidation on platinum. , 2006, Journal of the American Chemical Society.

[38]  K. Jacobsen,et al.  Real-space grid implementation of the projector augmented wave method , 2004, cond-mat/0411218.

[39]  H. Jónsson,et al.  Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. , 2004, The journal of physical chemistry. B.

[40]  Shigang Sun,et al.  In situ FTIRS studies of kinetics of HCOOH oxidation on Pt(110) electrode modified with antimony adatoms , 2001 .

[41]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[42]  M. Haruta,et al.  Catalytically highly active top gold atom on palladium nanocluster. , 2011, Nature materials.

[43]  A. Wiȩckowski,et al.  A first principles comparison of the mechanism and site requirements for the electrocatalytic oxidation of methanol and formic acid over Pt. , 2008, Faraday discussions.