The quantum query complexity of elliptic PDE

The query complexity of the following numerical problem is studied in the quantum model of computation: consider a general elliptic partial differential equation of order 2m in a smooth, bounded domain Q ⊂ Rd with smooth coefficients and homogeneous boundary conditions. We seek to approximate the solution on a smooth submanifold M ⊆ Q of dimension 0 ≤ d1 ≤ d. With the right-hand side belonging to Cr (Q), and the error being measured in the L∞(M) norm, we prove that the nth minimal quantum error is (up to logarithmic factors) of order n-min((r+2m)/d1,r/d+1). For comparison, in the classical deterministic setting the nth minimal error is known to be of order n-r/d, for all d1, while in the classical randomized setting it is (up to logarithmic factors) n-min((r+2m)/d1,r/d+1/2).

[1]  G. Brassard,et al.  Quantum Amplitude Amplification and Estimation , 2000, quant-ph/0005055.

[2]  Ju P Krasovskiĭ ISOLATION OF SINGULARITIES OF THE GREEN'S FUNCTION , 1967 .

[3]  Arthur G. Werschulz,et al.  The Complexity of Definite Elliptic Problems with Noisy Data , 1996, J. Complex..

[4]  S. Agmon,et al.  Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I , 1959 .

[5]  P. Shor INTRODUCTION TO QUANTUM ALGORITHMS , 2000, quant-ph/0005003.

[6]  Carsten Wiegand Quantum complexity of parametric integration , 2004, J. Complex..

[7]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[8]  E. D'yakonov Optimization in Solving Elliptic Problems , 1995 .

[9]  Boleslaw Z. Kacewicz Randomized and quantum algorithms yield a speed-up for initial-value problems , 2004, J. Complex..

[10]  H. Woxniakowski Information-Based Complexity , 1988 .

[11]  Stefan Heinrich Quantum approximation II. Sobolev embeddings , 2004, J. Complex..

[12]  B. Kacewicz Almost optimal solution of initial-value problems by randomized and quantum algorithms , 2006 .

[13]  Stefan Heinrich Monte Carlo approximation of weakly singular integral operators , 2006, J. Complex..

[14]  Stefan Heinrich Quantum approximation I. Embeddings of finite-dimensional Lp spaces , 2004, J. Complex..

[15]  Arthur G. Werschulz,et al.  Computational complexity of differential and integral equations - an information-based approach , 1991, Oxford mathematical monographs.

[16]  Erich Novak,et al.  Optimal approximation of elliptic problems by linear and nonlinear mappings I , 2006, J. Complex..

[17]  Stefan Heinrich From Monte Carlo to quantum computation , 2003, Math. Comput. Simul..

[18]  Artur Ekert,et al.  Basic Concepts in Quantum Computation (量子情報理論とその応用論文小特集) , 1998 .

[19]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[20]  Stefan Heinrich,et al.  The randomized information complexity of elliptic PDE , 2006, J. Complex..

[21]  Stefan Heinrich,et al.  Quantum integration in Sobolev classes , 2001, J. Complex..

[22]  Stefan Heinrich Quantum Summation with an Application to Integration , 2002, J. Complex..

[23]  Erich Novak Quantum Complexity of Integration , 2001, J. Complex..

[24]  Arthur O. Pittenger,et al.  An Introduction to Quantum Computing Algorithms , 2000 .

[25]  Marek Kwas Complexity of multivariate Feynman-Kac path integration in randomized and quantum settings , 2004 .

[26]  Jozef Gruska,et al.  Quantum Computing , 2008, Wiley Encyclopedia of Computer Science and Engineering.

[27]  E. Novak Deterministic and Stochastic Error Bounds in Numerical Analysis , 1988 .

[28]  Henryk Wozniakowski,et al.  Path Integration on a Quantum Computer , 2002, Quantum Inf. Process..