Forecasting the SST space-time variability of the Alboran Sea with genetic algorithms

We propose a nonlinear ocean forecasting technique based on a combination of genetic algorithms and empirical orthogonal function (EOF) analysis. The method is used to forecast the space-time variability of the sea surface temperature (SST) in the Alboran Sea. The genetic algorithm finds the equations that best describe the behaviour of the different temporal amplitude functions in the EOF decomposition and, therefore, enables global forecasting of the future time-variability.