Operationalizing Complex Causes: A Pragmatic View of Mediation

We examine the problem of causal response estimation for complex objects (e.g., text, images, genomics). In this setting, classical atomic interventions are often not available (e.g., changes to characters, pixels, DNA base-pairs). Instead, we only have access to indirect or crude interventions (e.g., enrolling in a writing program, modifying a scene, applying a gene therapy). In this work, we formalize this problem and provide an initial solution. Given a collection of candidate mediators, we propose (a) a two-step method for predicting the causal responses of crude interventions; and (b) a testing procedure to identify mediators of crude interventions. We demonstrate, on a range of simulated and real-world-inspired examples, that our approach allows us to efficiently estimate the effect of crude interventions with limited data from new treatment regimes.

[1]  Bernhard Schölkopf,et al.  Kernel Principal Component Analysis , 1997, ICANN.

[2]  Joseph Y. Halpern,et al.  Abstracting Causal Models , 2018, AAAI.

[3]  S. Holm A Simple Sequentially Rejective Multiple Test Procedure , 1979 .

[4]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[5]  J. Pearl Causality: Models, Reasoning and Inference , 2000 .

[6]  Krikamol Muandet,et al.  Dual Instrumental Variable Regression , 2020, NeurIPS.

[7]  Jeffrey Pennington,et al.  GloVe: Global Vectors for Word Representation , 2014, EMNLP.

[8]  Bernhard Schölkopf,et al.  Domain Adaptation under Target and Conditional Shift , 2013, ICML.

[9]  Qi Liu,et al.  Graph Intervention Networks for Causal Effect Estimation , 2021, ArXiv.

[10]  Christopher D. Manning,et al.  Stanza: A Python Natural Language Processing Toolkit for Many Human Languages , 2020, ACL.

[11]  P. Spirtes,et al.  Causal Inference of Ambiguous Manipulations , 2004, Philosophy of Science.

[12]  Alessandro Rinaldo,et al.  Distribution-Free Predictive Inference for Regression , 2016, Journal of the American Statistical Association.

[13]  Tor Lattimore,et al.  Causal Bandits: Learning Good Interventions via Causal Inference , 2016, NIPS.

[14]  Elias Bareinboim,et al.  A Calculus for Stochastic Interventions: Causal Effect Identification and Surrogate Experiments , 2020, AAAI.

[15]  Elias Bareinboim,et al.  Structural Causal Bandits: Where to Intervene? , 2018, NeurIPS.

[16]  Christina Heinze-Deml,et al.  Invariant Causal Prediction for Nonlinear Models , 2017, Journal of Causal Inference.

[17]  P. Geurts,et al.  Inferring Regulatory Networks from Expression Data Using Tree-Based Methods , 2010, PloS one.

[18]  Nando de Freitas,et al.  Learning Deep Features in Instrumental Variable Regression , 2020, ICLR.

[19]  Pietro Perona,et al.  Unsupervised Discovery of El Nino Using Causal Feature Learning on Microlevel Climate Data , 2016, UAI.

[20]  Juan L Gamella,et al.  Active Invariant Causal Prediction: Experiment Selection through Stability , 2020, NeurIPS.

[21]  Elias Bareinboim,et al.  Causal inference and the data-fusion problem , 2016, Proceedings of the National Academy of Sciences.

[22]  John Blitzer,et al.  Co-Training for Domain Adaptation , 2011, NIPS.

[23]  Michael Gamon,et al.  “President Vows to Cut Hair”: Dataset and Analysis of Creative Text Editing for Humorous Headlines , 2019, NAACL.

[24]  J. Böhnke Explanation in causal inference: Methods for mediation and interaction. , 2016, Quarterly journal of experimental psychology.

[25]  P. Dawid Decision-theoretic foundations for statistical causality , 2020, Journal of Causal Inference.

[26]  Judea Pearl,et al.  Complete Identification Methods for the Causal Hierarchy , 2008, J. Mach. Learn. Res..

[27]  Tyler J VanderWeele,et al.  Causal inference under multiple versions of treatment , 2013, Journal of causal inference.

[28]  Rajen Dinesh Shah,et al.  The hardness of conditional independence testing and the generalised covariance measure , 2018, The Annals of Statistics.

[29]  Pietro Perona,et al.  Causal feature learning: an overview , 2017 .

[30]  Diogo M. Camacho,et al.  Wisdom of crowds for robust gene network inference , 2012, Nature Methods.

[31]  Arthur Gretton,et al.  Kernel Instrumental Variable Regression , 2019, NeurIPS.

[32]  David Lopez-Paz,et al.  Invariant Risk Minimization , 2019, ArXiv.

[33]  P. Bühlmann,et al.  Invariance, Causality and Robustness , 2018, Statistical Science.

[34]  Joris M. Mooij,et al.  Causal Discovery for Causal Bandits utilizing Separating Sets , 2020, ArXiv.

[35]  Tom Burr,et al.  Causation, Prediction, and Search , 2003, Technometrics.

[36]  Kellyn F Arnold,et al.  A causal inference perspective on the analysis of compositional data , 2020, International journal of epidemiology.

[37]  Jonas Peters,et al.  Causal inference by using invariant prediction: identification and confidence intervals , 2015, 1501.01332.

[38]  Elias Bareinboim,et al.  Structural Causal Bandits with Non-Manipulable Variables , 2019, AAAI.

[39]  Keith A. Markus,et al.  Making Things Happen: A Theory of Causal Explanation , 2007 .

[40]  Avrim Blum,et al.  The Bottleneck , 2021, Monopsony Capitalism.