An RBF Solution to a Stagnation Point Flow Towards a Stretching Surface with Heat Generation

In this paper, we propose radial basis function (RBF) to solve nonlinear momentum and energy equations obtained from modeling steady laminar flow through a porous medium of an incompressible viscous conducting fluid imping- ing on a permeable stretching surface with heat generation. This flow impinges normal to a plane wall with heat transfer. Our reports consist of the effect of the porosity of the medium, the surface stretching velocity, and the heat generation/absorption coefficient on both the flow and heat transfer. A simple solution by using collocation points over the almost whole domain (0, ∞) is obtaind. We apply this method through the definite integration process and satisfy the infinity boundary condition by using Gaussian RBF. Index Terms—Stagnation point flow; Heat transfer; Porous medium; Radial basis function; Gaussian RBF.

[1]  Shmuel Rippa,et al.  An algorithm for selecting a good value for the parameter c in radial basis function interpolation , 1999, Adv. Comput. Math..

[2]  Hitoshi Koyama,et al.  Free Convective Heat Transfer Over a Nonisothermal Body of Arbitrary Shape Embedded in a Fluid-Saturated Porous Medium , 1987 .

[3]  Saeed Kazem,et al.  A New Method for Solving Steady Flow of a Third-Grade Fluid in a Porous Half Space Based on Radial Basis Functions , 2011 .

[4]  Mehdi Dehghan,et al.  Solution of the second-order one-dimensional hyperbolic telegraph equation by using the dual reciprocity boundary integral equation (DRBIE) method , 2010 .

[5]  Ching-Shyang Chen,et al.  A numerical method for heat transfer problems using collocation and radial basis functions , 1998 .

[6]  E. Kansa MULTIQUADRICS--A SCATTERED DATA APPROXIMATION SCHEME WITH APPLICATIONS TO COMPUTATIONAL FLUID-DYNAMICS-- II SOLUTIONS TO PARABOLIC, HYPERBOLIC AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS , 1990 .

[7]  E. J. Kansa,et al.  Application of the Multiquadric Method for Numerical Solution of Elliptic Partial Differential Equations , 2022 .

[8]  E. Kansa Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates , 1990 .

[9]  L. Crane Flow past a stretching plate , 1970 .

[10]  T. Ray Mahapatra,et al.  Heat transfer in stagnation-point flow towards a stretching sheet , 2002 .

[11]  Mehdi Dehghan,et al.  Use of radial basis functions for solving the second‐order parabolic equation with nonlocal boundary conditions , 2008 .

[12]  Rama Subba Reddy Gorla,et al.  Effects of thermal dispersion and stratification on combined convection on a vertical surface embedded in a porous medium , 1996 .

[13]  T. C. Chiam Stagnation-Point Flow Towards a Stretching Plate. , 1994 .

[14]  D. Ho-Minh,et al.  A Galerkin approach incorporating integrated radial basis function networks for the solution of 2D biharmonic equations , 2009, Int. J. Comput. Math..

[15]  R. Franke Scattered data interpolation: tests of some methods , 1982 .

[16]  R. Kilchherr,et al.  Transport phenomena in porous media , 2003 .

[17]  Paul S. Addison,et al.  Analysis of river bed surface roughnesses using 2D wavelet transform-based methods , 2003 .

[18]  F. Homann Der Einfluß großer Zähigkeit bei der Strömung um den Zylinder und um die Kugel , 1936 .

[19]  Andrew D. Back,et al.  Radial Basis Functions , 2001 .

[20]  B. K. Dutta,et al.  Temperature field in flow over a stretching sheet with uniform heat flux , 1985 .

[21]  L. Crane,et al.  Heat Transfer on a Continuous Stretching Sheet , 1982 .

[22]  T. Ray Mahapatra,et al.  Stagnation-point flow of a viscoelastic fluid towards a stretching surface , 2004 .

[23]  Hazem Ali Attia On the effectiveness of porosity on stagnation point flow towards a stretching surface with heat generation , 2007 .

[24]  Ioan Pop,et al.  Stagnation point flow of a micropolar fluid towards a stretching sheet , 2004 .

[25]  Scott A. Sarra,et al.  Adaptive radial basis function methods for time dependent partial differential equations , 2005 .

[26]  Saeed Kazem,et al.  Comparison between two common collocation approaches based on radial basis functions for the case of heat transfer equations arising in porous medium , 2010, ArXiv.

[27]  Karl Hiemenz,et al.  Die Grenzschicht an einem in den gleichförmigen Flüssigkeitsstrom eingetauchten geraden Kreiszylinder , 1911 .

[28]  Michael A. Golberg,et al.  Some recent results and proposals for the use of radial basis functions in the BEM , 1999 .

[29]  Musa A. Mammadov,et al.  Solving a system of nonlinear integral equations by an RBF network , 2009, Comput. Math. Appl..

[30]  Martin D. Buhmann,et al.  Radial Basis Functions: Theory and Implementations: Preface , 2003 .

[31]  P. D. Ariel,et al.  Hiemenz flow in hydromagnetics , 1994 .

[32]  Mehdi Dehghan,et al.  Numerical solution of the nonlinear Fredholm integral equations by positive definite functions , 2007, Appl. Math. Comput..

[33]  Nam Mai-Duy,et al.  Solving high order ordinary differential equations with radial basis function networks , 2005 .

[34]  M. A. Seddeek Effects of non-Darcian on forced convection heat transfer over a flat plate in a porous medium-with temperature dependent viscosity , 2005 .

[35]  E. Kansa,et al.  Exponential convergence and H‐c multiquadric collocation method for partial differential equations , 2003 .

[36]  R. E. Carlson,et al.  The parameter R2 in multiquadric interpolation , 1991 .

[37]  Hazem Ali Attia,et al.  HYDROMAGNETIC STAGNATION POINT FLOW WITH HEAT TRANSFER OVER A PERMEABLE SURFACE , 2003 .

[38]  T. Papanastasiou,et al.  Viscous Fluid Flow , 1999 .

[39]  Gregory E. Fasshauer,et al.  On choosing “optimal” shape parameters for RBF approximation , 2007, Numerical Algorithms.

[40]  Siraj-ul-Islam,et al.  Application of meshfree collocation method to a class of nonlinear partial differential equations. , 2009 .

[41]  Saeed Kazem,et al.  An improved numerical method for a class of astrophysics problems based on radial basis functions , 2011 .

[42]  Siraj-ul-Islam,et al.  A meshfree method for the numerical solution of the RLW equation , 2009 .

[43]  Daniel D. Joseph,et al.  Nonlinear equation governing flow in a saturated porous medium , 1982 .

[44]  V. K. Garg,et al.  Heat transfer due to stagnation point flow of a non-Newtonian fluid , 1994 .

[45]  Mehdi Dehghan,et al.  Numerical solution of the nonlinear Klein-Gordon equation using radial basis functions , 2009 .

[46]  Mehdi Dehghan,et al.  A method for solving partial differential equations via radial basis functions: Application to the heat equation , 2010 .

[47]  Rama Subba Reddy Gorla,et al.  Effects of thermal dispersion and stratification on non-darcy mixed convection from a vertical plate in a porous medium , 1998 .

[48]  Kambiz Vafai,et al.  The role of porous media in modeling flow and heat transfer in biological tissues , 2003 .

[49]  Jacob Bear,et al.  Transport Phenomena in Porous Media , 1998 .

[50]  Nam Mai-Duy,et al.  Numerical solution of differential equations using multiquadric radial basis function networks , 2001, Neural Networks.

[51]  Kumbakonam R. Rajagopal,et al.  Flow of a viscoelastic fluid over a stretching sheet , 1984 .

[52]  M. Massoudi,et al.  Heat transfer analysis of a viscoelastic fluid at a stagnation point , 1992 .

[53]  Saeed Kazem,et al.  A novel application of radial basis functions for solving a model of first-order integro-ordinary differential equation , 2011 .