Eigenvectors of Open Bazhanov-Stroganov Quantum Chain
暂无分享,去创建一个
[1] S. Kharchev,et al. 04 06 5 v 1 1 0 A pr 2 00 0 Eigenfunctions of GL ( N , R ) Toda chain : The Mellin-Barnes representation , 2008 .
[2] S. Pakuliak,et al. The Baxter–Bazhanov–Stroganov model: separation of variables and the Baxter equation , 2006, nlin/0603028.
[3] O. Lisovyy. Transfer matrix eigenvectors of the Baxter–Bazhanov–Stroganov τ2-model for N = 2 , 2005, nlin/0512026.
[4] V. Shadura,et al. Alternative method of calculating the eigenvalues of the transfer matrix of the τ2 model for N = 2 , 2005 .
[5] S. Pakuliak,et al. The Bazhanov Stroganov model from 3D approach , 2005, nlin/0505019.
[6] R. Baxter. The Order Parameter of the Chiral Potts Model , 2005, Physical review letters.
[7] N. Iorgov,et al. Wave functions of the toda chain with boundary interaction , 2004, Theoretical and Mathematical Physics.
[8] S. Pakuliak,et al. Quantum relativistic Toda chain at root of unity: isospectrality, modified Q-operator, and functional Bethe ansatz , 2002, nlin/0205037.
[9] S. Kharchev,et al. Unitary Representations of Uq(??}(2,ℝ)),¶the Modular Double and the Multiparticle q-Deformed¶Toda Chain , 2001, hep-th/0102180.
[10] S. Kharchev,et al. Fe b 20 01 ITEP-TH-8 / 01 Unitary representations of U q ( sl ( 2 , R ) ) , the modular double , and the multiparticle q-deformed Toda chains , 2001 .
[11] S. Kharchev,et al. Eigenfunctions of GL(N, ℝ) Toda chain: Mellin-Barnes representation , 2000, hep-th/0004065.
[12] I. Korepanov. Hidden symmetries in the 6-vertex model of statistical physics , 1994, hep-th/9410066.
[13] R. Baxter,et al. Star-triangle relation for a three-dimensional model , 1993 .
[14] V. Tarasov. CYCLIC MONODROMY MATRICES FOR THE R-MATRIX OF THE SIX-VERTEX MODEL AND THE CHIRAL POTTS MODEL WITH FIXED SPIN BOUNDARY CONDITIONS , 1992 .
[15] E. Sklyanin. Quantum Inverse Scattering Method. Selected Topics , 1992, hep-th/9211111.
[16] R. Baxter. Chiral Potts model: Eigenvalues of the transfer matrix , 1990 .
[17] R. Baxter,et al. FUNCTIONAL RELATIONS FOR TRANSFER MATRICES OF THE CHIRAL POTTS MODEL , 1990 .
[18] Y. Stroganov,et al. Chiral Potts model as a descendant of the six-vertex model , 1990 .
[19] R. Baxter. Superintegrable chiral Potts model: Thermodynamic properties, an “inverse” model, and a simple associated Hamiltonian , 1989 .
[20] V. Korepin,et al. Quantum inverse scattering method , 1982 .