Eigenvectors of Open Bazhanov-Stroganov Quantum Chain

In this contribution we give an explicit formula for the eigenvectors of Hamil- tonians of open Bazhanov-Stroganov quantum chain. The Hamiltonians of this quantum chain is defined by the generation polynomial An( ) which is upper-left matrix element of monodromy matrix built from the cyclic L-operators. The formulas for the eigenvec- tors are derived using iterative procedure by Kharchev and Lebedev and given in terms of wp(s)-function which is a root of unity analogue of q-function.

[1]  S. Kharchev,et al.  04 06 5 v 1 1 0 A pr 2 00 0 Eigenfunctions of GL ( N , R ) Toda chain : The Mellin-Barnes representation , 2008 .

[2]  S. Pakuliak,et al.  The Baxter–Bazhanov–Stroganov model: separation of variables and the Baxter equation , 2006, nlin/0603028.

[3]  O. Lisovyy Transfer matrix eigenvectors of the Baxter–Bazhanov–Stroganov τ2-model for N = 2 , 2005, nlin/0512026.

[4]  V. Shadura,et al.  Alternative method of calculating the eigenvalues of the transfer matrix of the τ2 model for N = 2 , 2005 .

[5]  S. Pakuliak,et al.  The Bazhanov Stroganov model from 3D approach , 2005, nlin/0505019.

[6]  R. Baxter The Order Parameter of the Chiral Potts Model , 2005, Physical review letters.

[7]  N. Iorgov,et al.  Wave functions of the toda chain with boundary interaction , 2004, Theoretical and Mathematical Physics.

[8]  S. Pakuliak,et al.  Quantum relativistic Toda chain at root of unity: isospectrality, modified Q-operator, and functional Bethe ansatz , 2002, nlin/0205037.

[9]  S. Kharchev,et al.  Unitary Representations of Uq(??}(2,ℝ)),¶the Modular Double and the Multiparticle q-Deformed¶Toda Chain , 2001, hep-th/0102180.

[10]  S. Kharchev,et al.  Fe b 20 01 ITEP-TH-8 / 01 Unitary representations of U q ( sl ( 2 , R ) ) , the modular double , and the multiparticle q-deformed Toda chains , 2001 .

[11]  S. Kharchev,et al.  Eigenfunctions of GL(N, ℝ) Toda chain: Mellin-Barnes representation , 2000, hep-th/0004065.

[12]  I. Korepanov Hidden symmetries in the 6-vertex model of statistical physics , 1994, hep-th/9410066.

[13]  R. Baxter,et al.  Star-triangle relation for a three-dimensional model , 1993 .

[14]  V. Tarasov CYCLIC MONODROMY MATRICES FOR THE R-MATRIX OF THE SIX-VERTEX MODEL AND THE CHIRAL POTTS MODEL WITH FIXED SPIN BOUNDARY CONDITIONS , 1992 .

[15]  E. Sklyanin Quantum Inverse Scattering Method. Selected Topics , 1992, hep-th/9211111.

[16]  R. Baxter Chiral Potts model: Eigenvalues of the transfer matrix , 1990 .

[17]  R. Baxter,et al.  FUNCTIONAL RELATIONS FOR TRANSFER MATRICES OF THE CHIRAL POTTS MODEL , 1990 .

[18]  Y. Stroganov,et al.  Chiral Potts model as a descendant of the six-vertex model , 1990 .

[19]  R. Baxter Superintegrable chiral Potts model: Thermodynamic properties, an “inverse” model, and a simple associated Hamiltonian , 1989 .

[20]  V. Korepin,et al.  Quantum inverse scattering method , 1982 .