Inherited disorders of voltage-gated sodium channels.

A variety of inherited human disorders affecting skeletal muscle contraction, heart rhythm, and nervous system function have been traced to mutations in genes encoding voltage-gated sodium channels. Clinical severity among these conditions ranges from mild or even latent disease to life-threatening or incapacitating conditions. The sodium channelopathies were among the first recognized ion channel diseases and continue to attract widespread clinical and scientific interest. An expanding knowledge base has substantially advanced our understanding of structure-function and genotype-phenotype relationships for voltage-gated sodium channels and provided new insights into the pathophysiological basis for common diseases such as cardiac arrhythmias and epilepsy.

[1]  G. Meola,et al.  Therapy in myotonic disorders and in muscle channelopathies , 2000, Neurological Sciences.

[2]  L. Ptáček,et al.  Paramyotonia congenita: Abnormal short exercise test, and improvement after mexiletine therapy , 1994, Muscle & nerve.

[3]  G. Breithardt,et al.  Genetic basis and molecular mechanism for idiopathic ventricular fibrillation , 1998, Nature.

[4]  M. Leppert,et al.  Sodium channel mutations in paramyotonia congenita and hyperkalemic periodic paralysis , 1993, Annals of neurology.

[5]  R Horn,et al.  Primary structure and functional expression of the human cardiac tetrodotoxin-insensitive voltage-dependent sodium channel. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Mohamed Chahine,et al.  Expression and Intracellular Localization of an SCN5A Double Mutant R1232W/T1620M Implicated in Brugada Syndrome , 2002, Circulation research.

[7]  J. Haines,et al.  Hyperkalemic periodic paralysis and the adult muscle sodium channel alpha-subunit gene. , 1990, Science.

[8]  A. George,et al.  Congenital sick sinus syndrome caused by recessive mutations in the cardiac sodium channel gene (SCN5A). , 2003, The Journal of clinical investigation.

[9]  K Fukushima,et al.  Frequent mutations of SCN1A in severe myoclonic epilepsy in infancy , 2002, Neurology.

[10]  Sulayman D. Dib-Hajj,et al.  Electrophysiological Properties of Mutant Nav1.7 Sodium Channels in a Painful Inherited Neuropathy , 2004, The Journal of Neuroscience.

[11]  L. Mestroni,et al.  SCN5A Mutation Associated With Dilated Cardiomyopathy, Conduction Disorder, and Arrhythmia , 2004, Circulation.

[12]  J. Thonnard,et al.  Genotype-phenotype correlations in human skeletal muscle sodium channel diseases. , 1995, Archives of neurology.

[13]  G. Landes,et al.  Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias , 1996, Nature Genetics.

[14]  B. Sunsaneewitayakul,et al.  Linkage analyses and SCN5A mutations screening in five sudden unexplained death syndrome (Lai-tai) families. , 2002, Journal of the Medical Association of Thailand = Chotmaihet thangphaet.

[15]  M Montal,et al.  A missense mutation of the Na+ channel αII subunit gene Nav1.2 in a patient with febrile and afebrile seizures causes channel dysfunction , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[16]  S. Priori,et al.  Loss of function associated with novel mutations of the SCN5A gene in patients with Brugada syndrome. , 2004, Canadian Journal of Cardiology.

[17]  R. Griggs The myotonic disorders and the periodic paralyses. , 1977, Advances in neurology.

[18]  G. Lathrop,et al.  Paramyotonia congenita and hyperkalemic periodic paralysis are linked to the adult muscle sodium channel gene , 1991, Annals of neurology.

[19]  H. Kwiecinski,et al.  Treatment of myotonia with antiarrhythmic drugs , 1992, Acta neurologica Scandinavica.

[20]  Carlos G Vanoye,et al.  Noninactivating voltage-gated sodium channels in severe myoclonic epilepsy of infancy. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Timothy A. Miller,et al.  Correlating phenotype and genotype in the periodic paralyses , 2004, Neurology.

[22]  O. Devinsky,et al.  Epilepsy-Associated Dysfunction in the Voltage-Gated Neuronal Sodium Channel SCN1A , 2003, The Journal of Neuroscience.

[23]  A. Jahangir,et al.  A trafficking defective, Brugada syndrome-causing SCN5A mutation rescued by drugs. , 2004, Cardiovascular research.

[24]  E. Streib AAEE minimonograph #27: Differential diagnosis of myotonic syndromes , 1987, Muscle & nerve.

[25]  M. Keating,et al.  The long QT syndrome. A review of recent molecular genetic and physiologic discoveries. , 1996, Medicine.

[26]  H. Lerche,et al.  Different effects on gating of three myotonia‐causing mutations in the inactivation gate of the human muscle sodium channel. , 1995, The Journal of physiology.

[27]  Willem Flameng,et al.  Abrupt rate accelerations or premature beats cause life-threatening arrhythmias in mice with long-QT3 syndrome , 2001, Nature Medicine.

[28]  A. George,et al.  A novel muscle sodium channel mutation causes painful congenital myotonia , 1997, Annals of neurology.

[29]  H. Lerche,et al.  Human sodium channel myotonia: slowed channel inactivation due to substitutions for a glycine within the III‐IV linker. , 1993, The Journal of physiology.

[30]  M. Scheinman,et al.  Effectiveness of sotalol treatment in symptomatic Brugada syndrome. , 2004, The American journal of cardiology.

[31]  D. Atkins,et al.  Normalization of Ventricular Repolarization with Flecainide in Long QT Syndrome Patients with SCN5A:ΔKPQ Mutation , 2001, Annals of noninvasive electrocardiology : the official journal of the International Society for Holter and Noninvasive Electrocardiology, Inc.

[32]  S. Cannon,et al.  Myasthenic syndrome caused by mutation of the SCN4A sodium channel , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Arthur J Moss,et al.  SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome , 1995, Cell.

[34]  J. Trimmer,et al.  Primary structure and functional expression of a mammalian skeletal muscle sodium channel , 1989, Neuron.

[35]  C. Green,et al.  Resolution of Refractory Symptoms of Secondary Erythermalgia With Intermittent Epidural Bupivacaine , 2001, Regional Anesthesia & Pain Medicine.

[36]  S. I. Levin,et al.  A Novel Epilepsy Mutation in the Sodium Channel SCN1A Identifies a Cytoplasmic Domain for β Subunit Interaction , 2004, The Journal of Neuroscience.

[37]  M. Kim,et al.  A case of primary erythromelalgia improved by mexiletine , 2004, The British journal of dermatology.

[38]  Margaret Robertson,et al.  Identification of a mutation in the gene causing hyperkalemic periodic paralysis , 1991, Cell.

[39]  R Horn,et al.  Sodium channel mutations in paramyotonia congenita exhibit similar biophysical phenotypes in vitro. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[40]  A. Hodgkin,et al.  Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo , 1952, The Journal of physiology.

[41]  K. Yamakawa,et al.  Nav1.1 mutations cause febrile seizures associated with afebrile partial seizures , 2001, Neurology.

[42]  S. Cannon,et al.  A sodium channel defect in hyperkalemic periodic paralysis: Potassium-induced failure of inactivation , 1991, Neuron.

[43]  D. Tester,et al.  A novel SCN5A arrhythmia mutation, M1766L, with expression defect rescued by mexiletine. , 2002, Cardiovascular research.

[44]  E. Oka,et al.  Is phenotype difference in severe myoclonic epilepsy in infancy related to SCN1A mutations? , 2003, Brain and Development.

[45]  F Andermann,et al.  Severe Myoclonic Epilepsy of Infancy: Extended Spectrum of GEFS+? , 2001, Epilepsia.

[46]  F. Lehmann-Horn,et al.  Membrane changes in cells from myotonia patients. , 1985, Physiological reviews.

[47]  M. Leppert,et al.  Sodium channel mutations in acetazolamide‐responsive myotonia congenita, paramyotonia congenita, and hyperkalemic periodic paralysis , 1994, Neurology.

[48]  W. Catterall,et al.  From Ionic Currents to Molecular Mechanisms The Structure and Function of Voltage-Gated Sodium Channels , 2000, Neuron.

[49]  Y. Rudy,et al.  Linking a genetic defect to its cellular phenotype in a cardiac arrhythmia , 1999, Nature.

[50]  R. Horn,et al.  Molecular Basis of Charge Movement in Voltage-Gated Sodium Channels , 1996, Neuron.

[51]  A. Wilde,et al.  A single Na(+) channel mutation causing both long-QT and Brugada syndromes. , 1999, Circulation research.

[52]  A. Wilde,et al.  Cardiac conduction defects associate with mutations in SCN5A , 1999, Nature Genetics.

[53]  L. Misery,et al.  Traitement de l'érythermalgie familiale par l'association lidocaïne- mexilétine , 2003 .

[54]  H. Lorković,et al.  Two cases of adynamia episodica hereditaria: In vitro investigation of muscle cell membrane and contraction parameters , 1983, Muscle & nerve.

[55]  J. Balser,et al.  Enhanced Na(+) channel intermediate inactivation in Brugada syndrome. , 2000, Circulation research.

[56]  S. Priori,et al.  Long QT syndrome patients with mutations of the SCN5A and HERG genes have differential responses to Na+ channel blockade and to increases in heart rate. Implications for gene-specific therapy. , 1995, Circulation.

[57]  A. Heils,et al.  A novel SCN1A mutation associated with generalized epilepsy with febrile seizures plus--and prevalence of variants in patients with epilepsy. , 2001, American journal of human genetics.

[58]  Jamie I Vandenberg,et al.  Slowed conduction and ventricular tachycardia after targeted disruption of the cardiac sodium channel gene Scn5a , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[59]  F Extramiana,et al.  Homozygous SCN5A Mutation in Long-QT Syndrome With Functional Two-to-One Atrioventricular Block , 2001, Circulation research.

[60]  E. Green,et al.  A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome , 1995, Cell.

[61]  Michel Baulac,et al.  First genetic evidence of GABAA receptor dysfunction in epilepsy: a mutation in the γ2-subunit gene , 2001, Nature Genetics.

[62]  H. Lerche,et al.  Paramyotonia congenita: The R1448P Na+ channel mutation in adult human skeletal muscle , 1996, Annals of neurology.

[63]  W. Frankel,et al.  Three ENU-induced neurological mutations in the pore loopof sodium channel Scn8a (Nav1.6) and a genetically linkedretinal mutation, rd13 , 2004, Mammalian Genome.

[64]  Vincent Gm,et al.  The molecular genetics of the long QT syndrome: genes causing fainting and sudden death. , 1998 .

[65]  R. H. Adrian,et al.  On the repetitive discharge in myotonic muscle fibres , 1974, The Journal of physiology.

[66]  N. Makita,et al.  Molecular Determinants of β1 Subunit-Induced Gating Modulation in Voltage-Dependent Na+ Channels , 1996, The Journal of Neuroscience.

[67]  Jeffrey L. Anderson,et al.  Sodium channel mutations and susceptibility to heart failure and atrial fibrillation. , 2005, JAMA.

[68]  A. George,et al.  Pharmacological targeting of long QT mutant sodium channels. , 1997, The Journal of clinical investigation.

[69]  Lori L. Isom,et al.  Mice Lacking Sodium Channel β1 Subunits Display Defects in Neuronal Excitability, Sodium Channel Expression, and Nodal Architecture , 2004, The Journal of Neuroscience.

[70]  S. Priori,et al.  Novel Arrhythmogenic Mechanism Revealed by a Long-QT Syndrome Mutation in the Cardiac Na+ Channel , 2001, Circulation research.

[71]  J. Malhotra,et al.  Functional and Biochemical Analysis of a Sodium Channel β1 Subunit Mutation Responsible for Generalized Epilepsy with Febrile Seizures Plus Type 1 , 2002, The Journal of Neuroscience.

[72]  F. Cappuccio,et al.  Variant of SCN5A Sodium Channel Implicated in Risk of Cardiac Arrhythmia , 2002, Science.

[73]  S. Priori,et al.  A molecular link between the sudden infant death syndrome and the long-QT syndrome. , 2000, The New England journal of medicine.

[74]  S. Priori,et al.  Cardiac sodium channel mutations in patients with long QT syndrome, an inherited cardiac arrhythmia. , 1995, Human molecular genetics.

[75]  Elmer S. West From the U. S. A. , 1965 .

[76]  J. Brugada,et al.  Further Characterization of the Syndrome of Right Bundle Branch Block, ST Segment Elevation, and Sudden Cardiac Death , 1997, Journal of cardiovascular electrophysiology.

[77]  F. Lehmann-Horn,et al.  Hypokalemic periodic paralysis: In vitro investigation of muscle fiber membrane parameters , 1984, Muscle & nerve.

[78]  P. Schwartz,et al.  Multiple mechanisms of Na+ channel--linked long-QT syndrome. , 1996, Circulation research.

[79]  David A. Williams,et al.  Mutant GABAA receptor γ2-subunit in childhood absence epilepsy and febrile seizures , 2001, Nature Genetics.

[80]  G. Breithardt,et al.  Life-threatening Arrhythmias Genotype-phenotype Correlation in the Long-qt Syndrome : Gene-specific Triggers for Genotype-phenotype Correlation in the Long-qt Syndrome Gene-specific Triggers for Life-threatening Arrhythmias , 2022 .

[81]  I. Scheffer,et al.  Sodium-channel defects in benign familial neonatal-infantile seizures , 2002, The Lancet.

[82]  P. C. Viswanathan,et al.  Clinical, Genetic, and Biophysical Characterization of SCN5A Mutations Associated With Atrioventricular Conduction Block , 2002, Circulation.

[83]  BernardBelhassen,et al.  Efficacy of Quinidine in High-Risk Patients With Brugada Syndrome , 2004 .

[84]  W. Catterall,et al.  An unexpected role for brain-type sodium channels in coupling of cell surface depolarization to contraction in the heart , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[85]  J. Balser,et al.  Phenotypic characterization of a novel long-QT syndrome mutation (R1623Q) in the cardiac sodium channel. , 1998, Circulation.

[86]  A. George,et al.  Molecular mechanism for an inherited cardiac arrhythmia , 1995, Nature.

[87]  S. Cannon,et al.  Inactivation defects caused by myotonia-associated mutations in the sodium channel III-IV linker , 1996, The Journal of general physiology.

[88]  A. George,et al.  Molecular Basis of an Inherited Epilepsy , 2002, Neuron.

[89]  Lucas J Herfst,et al.  Compound Heterozygosity for Mutations (W156X and R225W) in SCN5A Associated With Severe Cardiac Conduction Disturbances and Degenerative Changes in the Conduction System , 2003, Circulation research.

[90]  F. Chiang,et al.  A novel SCN5A mutation manifests as a malignant form of long QT syndrome with perinatal onset of tachycardia/bradycardia. , 2004, Cardiovascular research.

[91]  S. Cannon From mutation to myotonia in sodium channel disorders , 1997, Neuromuscular Disorders.

[92]  F. Sigworth,et al.  Impaired slow inactivation in mutant sodium channels. , 1996, Biophysical journal.

[93]  S. Priori,et al.  The long QT syndrome. , 1997, Current problems in cardiology.

[94]  C. Antzelevitch,et al.  Cellular basis for the Brugada syndrome and other mechanisms of arrhythmogenesis associated with ST-segment elevation. , 1999, Circulation.

[95]  S. Cannon,et al.  Pathophysiology of myotonia and periodic paralysis , 2002 .

[96]  D. Clapham,et al.  A Prokaryotic Voltage-Gated Sodium Channel , 2001, Science.

[97]  Chung-Chin Kuo,et al.  Na+ channels must deactivate to recover from inactivation , 1994, Neuron.

[98]  J. Haines,et al.  Temperature-sensitive mutations in the III–IV cytoplasmic loop region of the skeletal muscle sodium channel gene in paramyotonia congenita , 1992, Cell.

[99]  A. George,et al.  Characterization of human cardiac Na+ channel mutations in the congenital long QT syndrome. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[100]  Y. H. Chen,et al.  Distribution of voltage-gated sodium channel alpha-subunit and beta-subunit mRNAs in human hippocampal formation, cortex, and cerebellum. , 2000, The Journal of comparative neurology.

[101]  A. George,et al.  Masseter Muscle Rigidity Associated with Glycine1306-to- Alanine Mutation in the Adult Muscle Sodium Channel α-Subunit Gene , 1995 .

[102]  S. Cannon,et al.  Mexiletine block of disease‐associated mutations in S6 segments of the human skeletal muscle Na+ channel , 2001, The Journal of physiology.

[103]  Yukitoshi Takahashi,et al.  Mutations of sodium channel alpha subunit type 1 (SCN1A) in intractable childhood epilepsies with frequent generalized tonic-clonic seizures. , 2003, Brain : a journal of neurology.

[104]  B. Kerem,et al.  Molecular pharmacology of the sodium channel mutation D1790G linked to the long-QT syndrome. , 2000, Circulation.

[105]  E. Hoffman,et al.  A Met-to-Val mutation in the skeletal muscle Na+ channel α-subunit in hyperkalaemic periodic paralysis , 1991, Nature.

[106]  C Antzelevitch,et al.  Transmural dispersion of repolarization and arrhythmogenicity: the Brugada syndrome versus the long QT syndrome. , 1999, Journal of electrocardiology.

[107]  H. Jongsma,et al.  A Cardiac Sodium Channel Mutation Cosegregates With a Rare Connexin40 Genotype in Familial Atrial Standstill , 2003, Circulation research.

[108]  S. Waxman,et al.  A double mutation in families with periodic paralysis defines new aspects of sodium channel slow inactivation. , 2000, The Journal of clinical investigation.

[109]  W. Catterall,et al.  Cellular and molecular biology of voltage-gated sodium channels. , 1992, Physiological reviews.

[110]  J. Towbin,et al.  Genetic and biophysical basis of sudden unexplained nocturnal death syndrome (SUNDS), a disease allelic to Brugada syndrome. , 2002, Human molecular genetics.

[111]  Colleen E. Clancy,et al.  Na+ Channel Mutation That Causes Both Brugada and Long-QT Syndrome Phenotypes: A Simulation Study of Mechanism , 2002, Circulation.

[112]  D. Escande,et al.  Haploinsufficiency in combination with aging causes SCN5A-linked hereditary Lenègre disease. , 2003, Journal of the American College of Cardiology.

[113]  J. L. Haines,et al.  Partial and generalized epilepsy with febrile seizures plus and a novel SCN1A mutation , 2001, Neurology.

[114]  A. L. Goldin,et al.  A Missense Mutation in the Sodium Channel Scn8a Is Responsible for Cerebellar Ataxia in the Mouse Mutant jolting , 1996, The Journal of Neuroscience.

[115]  M. Horie,et al.  Drug-Induced Long-QT Syndrome Associated With a Subclinical SCN5A Mutation , 2002, Circulation.

[116]  D. McEwen,et al.  Sodium Channel β1 Subunit-mediated Modulation of Nav1.2 Currents and Cell Surface Density Is Dependent on Interactions with Contactin and Ankyrin* , 2004, Journal of Biological Chemistry.

[117]  P. C. Viswanathan,et al.  A sodium-channel mutation causes isolated cardiac conduction disease , 2001, Nature.

[118]  M. Leppert,et al.  Paramyotonia congenita and hyperkalemic periodic paralysis map to the same sodium-channel gene locus. , 1991, American journal of human genetics.

[119]  G. Breithardt,et al.  Sodium channel gene (SCN5A) mutations in 44 index patients with Brugada syndrome: Different incidences in familial and sporadic disease , 2003, Human mutation.

[120]  A. George,et al.  Different flecainide sensitivity of hNav1.4 channels and myotonic mutants explained by state‐dependent block , 2004, The Journal of physiology.

[121]  W. Catterall,et al.  An unexpected requirement for brain-type sodium channels for control of heart rate in the mouse sinoatrial node , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[122]  W. Catterall Molecular properties of brain sodium channels: an important target for anticonvulsant drugs. , 1999, Advances in neurology.

[123]  J. Towbin,et al.  Postmortem molecular analysis of SCN5A defects in sudden infant death syndrome. , 2001, JAMA.

[124]  R. Moxley,et al.  Myotonia fluctuans. A third type of muscle sodium channel disease. , 1994, Archives of neurology.

[125]  F. Conti,et al.  Structural parts involved in activation and inactivation of the sodium channel , 1989, Nature.

[126]  K. Ueda,et al.  A novel SCN5A mutation associated with idiopathic ventricular fibrillation without typical ECG findings of Brugada syndrome , 2000, FEBS letters.

[127]  S. Cannon,et al.  Functional expression of sodium channel mutations identified in families with periodic paralysis , 1993, Neuron.

[128]  C Antzelevitch,et al.  Ionic mechanisms responsible for the electrocardiographic phenotype of the Brugada syndrome are temperature dependent. , 1999, Circulation research.

[129]  W. R. Taylor,et al.  Sudden death among Southeast Asian refugees. An unexplained nocturnal phenomenon. , 1983, JAMA.

[130]  J. Towbin,et al.  Sodium channel blockers identify risk for sudden death in patients with ST-segment elevation and right bundle branch block but structurally normal hearts. , 2000, Circulation.

[131]  C. van Broeckhoven,et al.  A deletion in SCN1B is associated with febrile seizures and early-onset absence epilepsy , 2003, Neurology.

[132]  C Antzelevitch,et al.  Ion channels and ventricular arrhythmias: cellular and ionic mechanisms underlying the Brugada syndrome. , 1999, Current opinion in cardiology.

[133]  R. Rogart,et al.  Molecular cloning of a putative tetrodotoxin-resistant rat heart Na+ channel isoform. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[134]  B. Ding,et al.  Mutations in SCN9A, encoding a sodium channel alpha subunit, in patients with primary erythermalgia , 2004, Journal of Medical Genetics.

[135]  L. Lagae,et al.  De novo mutations in the sodium-channel gene SCN1A cause severe myoclonic epilepsy of infancy. , 2001, American journal of human genetics.

[136]  S. Priori,et al.  The Elusive Link Between LQT3 and Brugada Syndrome: The Role of Flecainide Challenge , 2000, Circulation.

[137]  H. Lerche,et al.  Mutant channels contribute <50% to Na+ current in paramyotonia congenita muscle. , 1999, Brain : a journal of neurology.

[138]  I. V. Van Gelder,et al.  Human SCN5A gene mutations alter cardiac sodium channel kinetics and are associated with the Brugada syndrome. , 1999, Cardiovascular research.

[139]  Samuel F. Berkovic,et al.  Febrile seizures and generalized epilepsy associated with a mutation in the Na+-channel ß1 subunit gene SCN1B , 1998, Nature Genetics.

[140]  Stéphanie Baulac,et al.  Mutations of SCN1A, encoding a neuronal sodium channel, in two families with GEFS+2 , 2000, Nature Genetics.

[141]  Lucas J Herfst,et al.  Na+ channel mutation leading to loss of function and non-progressive cardiac conduction defects. , 2003, Journal of molecular and cellular cardiology.

[142]  K. Nademanee,et al.  Arrhythmogenic marker for the sudden unexplained death syndrome in Thai men. , 1997, Circulation.

[143]  I. Scheffer,et al.  Benign familial neonatal‐infantile seizures: Characterization of a new sodium channelopathy , 2004, Annals of neurology.

[144]  William A Catterall,et al.  Reduced sodium channel density, altered voltage dependence of inactivation, and increased susceptibility to seizures in mice lacking sodium channel β2-subunits , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[145]  R. Kallen,et al.  Primary structure of the adult human skeletal muscle voltage‐dependent sodium channel , 1992, Annals of neurology.

[146]  S. Priori,et al.  Association of Long QT Syndrome Loci and Cardiac Events Among Patients Treated With β-Blockers , 2004 .

[147]  P. Ruben,et al.  Slow inactivation in voltage-gated sodium channels , 2007, Cell Biochemistry and Biophysics.

[148]  E. Oka,et al.  Significant correlation of the SCN1A mutations and severe myoclonic epilepsy in infancy. , 2002, Biochemical and biophysical research communications.

[149]  S. Priori,et al.  Long QT syndrome, Brugada syndrome, and conduction system disease are linked to a single sodium channel mutation. , 2002, The Journal of clinical investigation.

[150]  K. Yamakawa,et al.  Autosomal dominant epilepsy with febrile seizures plus with missense mutations of the (Na+)-channel α1 subunit gene, SCN1A , 2002, Epilepsy Research.

[151]  R. Ruff Slow Na+ channel inactivation must be disrupted to evoke prolonged depolarization-induced paralysis. , 1994, Biophysical journal.

[152]  A. Shrier,et al.  Novel Mechanism for Brugada Syndrome: Defective Surface Localization of an SCN5A Mutant(R1432G) , 2001, Circulation research.

[153]  H. Lerche,et al.  K(+)‐aggravated myotonia: destabilization of the inactivated state of the human muscle Na+ channel by the V1589M mutation. , 1994, The Journal of physiology.

[154]  D. Escande,et al.  Novel SCN5A Mutation Leading Either to Isolated Cardiac Conduction Defect or Brugada Syndrome in a Large French Family , 2001, Circulation.

[155]  W. Catterall,et al.  Molecular Determinants of Na+ Channel Function in the Extracellular Domain of the β1 Subunit* , 1998, The Journal of Biological Chemistry.

[156]  I. Scheffer,et al.  Neuronal sodium-channel alpha1-subunit mutations in generalized epilepsy with febrile seizures plus. , 2001, American journal of human genetics.

[157]  Jeffrey J. Clare,et al.  Distribution of voltage‐gated sodium channel α‐subunit and β‐subunit mRNAs in human hippocampal formation, cortex, and cerebellum , 2000 .