Study on multiple-step incremental air-bending forming of sheet metal with springback model and FEM simulation

A mathematical model of springback radius was developed with dimensional analysis and orthogonal test. With this model, the punch radius could be solved for forming high-precision semiellipse-shaped workpieces. With the punch radius and other geometrical parameters of a tool, a 2D ABAQUS finite-element model (FEM) was established. Then, the forming process of sheet metal multiple-step incremental air bending was simulated with the FEM. The result showed that average errors of the simulated workpiece were +0.68/−0.65 mm, and provided the process data consisting of sheet feed rate, punch displacement and springback angle in each step. A semiellipse-shaped workpiece, whose average errors are +0.68/−0.69 mm, was made with the simulation data. These results indicate that the punch design method is feasible with the mathematical model, and the means of FEM simulation is effective. It can be taken as a new approach for sheet metal multiple-step incremental air-bending forming and tool design.