Telescopes as mechatronic systems

The system design of telescopes is usually dominated by the aspects of the optics and receiving instruments. The telescope structure, mechanic and control are "only" aids to position these elements to the celestial target, but their quality has a big impact on the final performance. The paper describes an integrated design approach to these "mechatronic" telescope subsystems.

[1]  Hans Juergen Kaercher Experience with the design and construction of huge telescope pedestals , 2004, Extremely Large Telescopes.

[2]  Myung Cho,et al.  Wind-induced structural response of a large telescope , 2004, SPIE Astronomical Telescopes + Instrumentation.

[3]  Hans Juergen Kaercher Concepts for a lightweight balloon telescope for solar observation , 2003, SPIE Astronomical Telescopes + Instrumentation.

[4]  Hans Juergen Kaercher,et al.  Pointing control system of SOFIA , 2000, Astronomical Telescopes and Instrumentation.

[5]  Hans Juergen Kaercher Experience with wind-excited mirror vibrations , 2004, Extremely Large Telescopes.

[6]  Michael Link,et al.  AN APPROACH TO OPTIMAL PICK-UP AND EXCITER PLACEMENT , 1996 .

[7]  A. Bayley,et al.  Thermal effects on the pointing of the 32-m MERLIN radio telescope at Cambridge , 1994 .

[8]  Rainer Nordmann,et al.  End-to-end simulation of the image stability for the airborne telescope SOFIA , 2000, Astronomical Telescopes and Instrumentation.

[9]  G. Zacchiroli,et al.  Active surface system for the new Sardinia Radiotelescope , 2004, SPIE Astronomical Telescopes + Instrumentation.

[10]  Raymond N. Wilson Reflecting Telescope Optics I , 1996 .

[11]  Jacob W. M. Baars,et al.  Design of the Large Millimeter Telescope/Gran Telescopio Millimetrico (LMT/GTM) , 2000, Astronomical Telescopes and Instrumentation.

[12]  Mariana De Kock,et al.  Design and commissioning experience of SALT facility , 2004, SPIE Astronomical Telescopes + Instrumentation.

[13]  Martin Suess,et al.  Verification of the active deformation compensation system of the LMT/GTM by end-to-end simulations , 2000, Astronomical Telescopes and Instrumentation.

[14]  J. Ball,et al.  The pointing calibration of the Haystack antenna , 1968 .

[15]  Francois Roddier,et al.  Adaptive Optics in Astronomy: Imaging through the atmosphere , 2004 .

[16]  Hans Juergen Kaercher Enhanced pointing of telescopes by smart structure concepts based on modal observers , 1999, Smart Structures.

[17]  Hans Juergen Kaercher Iso-static mirror supports vs. homologue reflectors: a comparison , 2004, SPIE Astronomical Telescopes + Instrumentation.

[18]  Torben Andersen,et al.  Euro50 : design study of a 50 m Adaptive Optics Telescope , 2003 .

[19]  W. Gawronski Three Models of Wind-Gust Disturbances for the Analysis of Antenna Pointing Accuracy , 2002 .

[20]  H. J. Kärcher Das große Millimeterwellen-Teleskop auf dem Cerro la Negra in Mexiko , 2003 .

[21]  Martin Suess,et al.  Airborne pointing and pointing improvement strategy for SOFIA , 2003, SPIE Astronomical Telescopes + Instrumentation.

[22]  Hans Juergen Kaercher Azimuth axis design for huge telescopes: an update , 2004, SPIE Astronomical Telescopes + Instrumentation.

[23]  Hans Juergen Kaercher Airborne environment: a challenge for telescope design , 2000, Astronomical Telescopes and Instrumentation.

[24]  Hans Ruscheweyh Dynamische Windwirkung an Bauwerken , 1982 .

[25]  A. Greve,et al.  Thermal control of the IRAM 30-m millimeter radio telescope , 1988 .

[26]  H. Nicklas,et al.  Active Structural Control Of Very Large Telescopes , 1989, Defense, Security, and Sensing.