Alzheimer's disease: Apolipoprotein E and cognitive performance

Key proteins implicated in the development of Alzheimer's disease are the β-amyloid precursor protein, which gives rise to the β-amyloid peptides that accumulate in the deteriorating brain, and the different isoforms of apolipoprotein E (apoE). The apoE4 variant increases the risk of developing the disease compared with apoE3 (ref. 3). We have tested the spatial memory of transgenic mice carrying human forms of these proteins and find that it is impaired in mice with apoE4 but not those with apoE3, even though the levels of β-amyloid in their brains are comparable. The fact that apoE3, but not apoE4, can protect against cognitive deficits induced by β-amyloid may explain why human apoE4 carriers are at greater risk of developing Alzheimer's than apoE3 carriers.

[1]  J. Haines,et al.  Effects of Age, Sex, and Ethnicity on the Association Between Apolipoprotein E Genotype and Alzheimer Disease: A Meta-analysis , 1997 .

[2]  D. Price,et al.  Mutant genes in familial Alzheimer's disease and transgenic models. , 1998, Annual review of neuroscience.

[3]  T. Morgan,et al.  Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[4]  L. Mucke,et al.  Isoform-specific effects of human apolipoprotein E on brain function revealed in ApoE knockout mice: increased susceptibility of females. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[5]  L. Lue,et al.  Soluble Amyloid β Peptide Concentration as a Predictor of Synaptic Change in Alzheimer’s Disease , 1999 .

[6]  Christina A. Wilson,et al.  Intracellular APP Processing and Aβ Production in Alzheimer Disease , 1999 .

[7]  K. Duff,et al.  Behavioral Changes in Transgenic Mice Expressing Both Amyloid Precursor Protein and Presenilin-1 Mutations: Lack of Association with Amyloid Deposits , 1999, Behavior genetics.

[8]  Dominic M. Walsh,et al.  Protofibrillar Intermediates of Amyloid β-Protein Induce Acute Electrophysiological Changes and Progressive Neurotoxicity in Cortical Neurons , 1999, The Journal of Neuroscience.

[9]  R. Nicoll,et al.  Plaque-independent disruption of neural circuits in Alzheimer's disease mouse models. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[10]  B Engvall,et al.  Cerebrospinal fluid Aβ42 is increased early in sporadic Alzheimer's disease and declines with disease progression , 1999, Annals of neurology.

[11]  Matthias Orth,et al.  Expression of Human Apolipoprotein E3 or E4 in the Brains ofApoe−/− Mice: Isoform-Specific Effects on Neurodegeneration , 1999, The Journal of Neuroscience.

[12]  C. Masters,et al.  Soluble pool of Aβ amyloid as a determinant of severity of neurodegeneration in Alzheimer's disease , 1999, Annals of neurology.