Markov Chains on Orbits of Permutation Groups

We present a novel approach to detecting and utilizing symmetries in probabilistic graphical models with two main contributions. First, we present a scalable approach to computing generating sets of permutation groups representing the symmetries of graphical models. Second, we introduce orbital Markov chains, a novel family of Markov chains leveraging model symmetries to reduce mixing times. We establish an insightful connection between model symmetries and rapid mixing of orbital Markov chains. Thus, we present the first lifted MCMC algorithm for probabilistic graphical models. Both analytical and empirical results demonstrate the effectiveness and efficiency of the approach.

[1]  Martin E. Dyer,et al.  On Markov Chains for Independent Sets , 2000, J. Algorithms.

[2]  M. Stephens Dealing with label switching in mixture models , 2000 .

[3]  Igor L. Markov,et al.  Efficient symmetry breaking for Boolean satisfiability , 2003, IEEE Transactions on Computers.

[4]  Martin E. Dyer,et al.  Path coupling: A technique for proving rapid mixing in Markov chains , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[5]  Olle Häggström Finite Markov Chains and Algorithmic Applications , 2002 .

[6]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[7]  Sebastian Riedel Improving the Accuracy and Efficiency of MAP Inference for Markov Logic , 2008, UAI.

[8]  Pedro M. Domingos,et al.  Lifted First-Order Belief Propagation , 2008, AAAI.

[9]  P. Buchholz Exact and ordinary lumpability in finite Markov chains , 1994, Journal of Applied Probability.

[10]  Guy Van den Broeck On the Completeness of First-Order Knowledge Compilation for Lifted Probabilistic Inference , 2011, NIPS.

[11]  Vibhav Gogate,et al.  Advances in Lifted Importance Sampling , 2012, AAAI.

[12]  David A. Freedman,et al.  De Finetti's generalizations of exchangeability , 1980 .

[13]  Igor Pak,et al.  The product replacement algorithm is polynomial , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[14]  Heiner Stuckenschmidt,et al.  Log-Linear Description Logics , 2011, IJCAI.

[15]  Ben Taskar,et al.  A permutation-augmented sampler for DP mixture models , 2007, ICML '07.

[16]  Scott H. Murray,et al.  Generating random elements of a finite group , 1995 .

[17]  Aarnout Brombacher,et al.  Probability... , 2009, Qual. Reliab. Eng. Int..

[18]  Brendan D. McKay,et al.  Practical graph isomorphism, II , 2013, J. Symb. Comput..

[19]  D. Aldous Random walks on finite groups and rapidly mixing markov chains , 1983 .

[20]  Jörg Hoffmann,et al.  From Sampling to Model Counting , 2007, IJCAI.

[21]  François Margot,et al.  Exploiting orbits in symmetric ILP , 2003, Math. Program..

[22]  Eric Vigoda,et al.  Fast convergence of the Glauber dynamics for sampling independent sets , 1999, Random Struct. Algorithms.

[23]  Dror Weitz,et al.  Counting independent sets up to the tree threshold , 2006, STOC '06.

[24]  Leslie Ann Goldberg,et al.  Computation in permutation groups: counting and randomly sampling orbits , 2001 .

[25]  Guy Van den Broeck,et al.  Conditioning in First-Order Knowledge Compilation and Lifted Probabilistic Inference , 2012, AAAI.

[26]  Matthew Richardson,et al.  Markov logic networks , 2006, Machine Learning.

[27]  Jeff T. Linderoth,et al.  Orbital branching , 2007, Math. Program..

[28]  WalshToby,et al.  Symmetry-breaking answer set solving , 2011 .

[29]  Martin E. Dyer,et al.  A more rapidly mixing Markov chain for graph colorings , 1998, Random Struct. Algorithms.

[30]  Dan Roth,et al.  Lifted First-Order Probabilistic Inference , 2005, IJCAI.

[31]  Mathias Niepert A Delayed Column Generation Strategy for Exact k-Bounded MAP Inference in Markov Logic Networks , 2010, UAI.

[32]  Toby Walsh,et al.  Symmetry-breaking answer set solving , 2010, AI Commun..

[33]  Kristian Kersting,et al.  Counting Belief Propagation , 2009, UAI.

[34]  Eugene M. Luks,et al.  Isomorphism of graphs of bounded valence can be tested in polynomial time , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[35]  Stuart J. Russell,et al.  General-Purpose MCMC Inference over Relational Structures , 2006, UAI.

[36]  David Poole,et al.  First-order probabilistic inference , 2003, IJCAI.

[37]  B. D. Finetti,et al.  Probability, induction and statistics : the art of guessing , 1979 .

[38]  Kristian Kersting,et al.  Lifted Linear Programming , 2012, AISTATS.

[39]  Eric Vigoda,et al.  Improved Mixing Condition on the Grid for Counting and Sampling Independent Sets , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[40]  Igor L. Markov,et al.  Faster symmetry discovery using sparsity of symmetries , 2008, 2008 45th ACM/IEEE Design Automation Conference.

[41]  Allan Sly,et al.  Computational Transition at the Uniqueness Threshold , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[42]  James Mackenzie Crawford A theoretical analysis of reasoning by symmetry in first-order logic (extended abstract) , 1992 .

[43]  Lise Getoor,et al.  Bisimulation-based Approximate Lifted Inference , 2009, UAI.

[44]  François Margot,et al.  Symmetry in Integer Linear Programming , 2010, 50 Years of Integer Programming.

[45]  Max Neunhöffer,et al.  Enumerating big orbits and an application: B acting on the cosets of Fi23 , 2007 .