Equational Systems and Free Constructions (Extended Abstract)

The purpose of this paper is threefold: to present a general abstract, yet practical, notion of equational system; to investigate and develop a theory of free constructions for such equational systems; and to illustrate the use of equational systems as needed in modern applications, specifically to the theory of substitution in the presence of variable binding and to models of name-passing process calculi.

[1]  Brian Campbell,et al.  Amortised Memory Analysis Using the Depth of Data Structures , 2009, ESOP.

[2]  Samson Abramsky,et al.  Domain theory , 1995, LICS 1995.

[3]  Makoto Hamana Free S-Monoids: A Higher-Order Syntax with Metavariables , 2004, APLAS.

[4]  Davide Sangiorgi,et al.  A Fully Abstract Model for the [pi]-calculus , 1996, Inf. Comput..

[5]  B. Day On closed categories of functors , 1970 .

[6]  Maarten M. Fokkinga Datatype Laws without Signatures , 1996, Math. Struct. Comput. Sci..

[7]  Andrew M. Pitts,et al.  A New Approach to Abstract Syntax with Variable Binding , 2002, Formal Aspects of Computing.

[8]  Christoph Lüth,et al.  Rewriting Via Coinserters , 2003, Nord. J. Comput..

[9]  Matthew Hennessy,et al.  Full Abstraction for a Simple Parallel Programming Language , 1979, MFCS.

[10]  Gordon D. Plotkin,et al.  Computational Effects and Operations: An Overview , 2004, Electron. Notes Theor. Comput. Sci..

[11]  Gordon D. Plotkin,et al.  Abstract syntax and variable binding , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).

[12]  J. Isbell,et al.  Reports of the Midwest Category Seminar I , 1967 .

[13]  E. Moggi,et al.  A fully-abstract model for the /spl pi/-calculus , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.

[14]  Christoph Lüth,et al.  Dualising Initial Algebras , 2003, Math. Struct. Comput. Sci..

[15]  James Worrell,et al.  Terminal sequences for accessible endofunctors , 1999, CMCS.

[16]  A. Kock Strong functors and monoidal monads , 1972 .

[17]  Gordon D. Plotkin,et al.  Algebraic Operations and Generic Effects , 2003, Appl. Categorical Struct..

[18]  K. Mani Chandy,et al.  Current Trends in Programming Methodology: Software Specification and Design , 1977 .

[19]  I. Stark Free-Algebra Models for the π-Calculus , 1997 .

[20]  M. Barr,et al.  Toposes, Triples and Theories , 1984 .

[21]  G. M. Kelly,et al.  Adjunctions whose counits are coequalizers, and presentations of finitary enriched monads , 1993 .

[22]  Corina Cîrstea,et al.  An Algebra-Coalgebra Framework for System Specification , 2000, CMCS.

[23]  Edmund Robinson Variations on Algebra: Monadicity and Generalisations of Equational Therories , 2002, Formal Aspects of Computing.

[24]  John Power Enriched Lawvere Theories , .