Definition and classification of semi-fuzzy quantifiers for the evaluation of fuzzy quantified sentences

This paper describes a classification of semi-fuzzy quantifiers that considerably improves the division between what Zadeh calls quantifiers of the first kind and those of the second kind. A number of cases are contemplated that are not habitually described in the literature on fuzzy quantification (e.g., comparative and exception quantifiers). Models are also defined for all the types of semi-fuzzy quantifiers framed in the classification. Thus in order to construct fuzzy quantifiers it is sufficient to apply a suitable quantifier fuzzification method. This paper also deals with the application of semi-fuzzy quantifiers and fuzzy quantifiers to fuzzy relations. The solution of this problem is of interest in various fields; amongst which, perhaps the most noteworthy is that of fuzzy databases.

[1]  Etienne E. Kerre,et al.  An overview of fuzzy quantifiers. (II). Reasoning and applications , 1998, Fuzzy Sets Syst..

[2]  D. Dubois,et al.  Fuzzy cardinality and the modeling of imprecise quantification , 1985 .

[3]  Daniel Sánchez,et al.  Fuzzy cardinality based evaluation of quantified sentences , 2000, Int. J. Approx. Reason..

[4]  Daniel Sánchez,et al.  A survey of methods for evaluating quantified sentences , 1999, EUSFLAT-ESTYLF Joint Conf..

[5]  J. V. D. Auwera The semantics of determiners , 1982 .

[6]  Senén Barro,et al.  A framework for fuzzy quantification models analysis , 2003, IEEE Trans. Fuzzy Syst..

[7]  Ingo Glöckner Evaluation of quantified propositions in generalized models of fuzzy quantification , 2004, Int. J. Approx. Reason..

[8]  D. S. Fernández Adquisición de relaciones entre atributos en bases de datos relacionales , 2000 .

[9]  D. Ralescu Cardinality, quantifiers, and the aggregation of fuzzy criteria , 1995 .

[10]  Ronald R. Yager,et al.  Quantified Propositions in a Linguistic Logic , 1983, Int. J. Man Mach. Stud..

[11]  Edward L. Keenan,et al.  The Semantics of Determiners , 1996 .

[12]  Senén Barro,et al.  Probabilistic evaluation of fuzzy quantified sentences: independence profile , 2001 .

[13]  J. Barwise,et al.  Generalized quantifiers and natural language , 1981 .

[14]  Johan van Benthem,et al.  Handbook of Logic and Language , 1996 .

[15]  L. Zadeh A COMPUTATIONAL APPROACH TO FUZZY QUANTIFIERS IN NATURAL LANGUAGES , 1983 .

[16]  Dag Westerståhl,et al.  Generalized Quantifiers in Linguistics and Logic , 1997, Handbook of Logic and Language.

[17]  Patrick Bosc,et al.  Quantified Statements and Database Fuzzy Querying , 1995 .

[18]  A. Knoll,et al.  A formal theory of fuzzy natural language quantification and its role in granular computing , 2001 .

[19]  Jonathan Lawry,et al.  A mass assignment theory of the probability of fuzzy events , 1996, Fuzzy Sets Syst..

[20]  Hans Smessaert,et al.  Monotonicity properties of comparative determiners , 1996 .

[21]  Edward L. Keenan,et al.  In The Handbook of Contemporary Semantic Theory. 1996. Shalom Lappin (ed). Blackwell The Semantics of Determiners , 1996 .

[22]  Senén Barro,et al.  Voting-model based evaluation of fuzzy quantified sentences: a general framework , 2004, Fuzzy Sets Syst..

[23]  Frank Klawonn,et al.  Foundations of fuzzy systems , 1994 .

[24]  Lotfi A. Zadeh,et al.  A Theory of Approximate Reasoning , 1979 .

[25]  P. Bosc,et al.  Monotonic quantified statements and fuzzy integrals , 1994, NAFIPS/IFIS/NASA '94. Proceedings of the First International Joint Conference of The North American Fuzzy Information Processing Society Biannual Conference. The Industrial Fuzzy Control and Intellige.

[26]  Shalom Lappin,et al.  当代语义理论指南 = The Handbook of Contemporary Semantic Theory , 2015 .

[27]  Edward L. Keenan,et al.  A semantic characterization of natural language determiners , 1986 .

[28]  Senén Barro,et al.  A general framework for probabilistic approaches to fuzzy quantification , 2001, EUSFLAT Conf..