暂无分享,去创建一个
[1] Andrzej Cichocki,et al. Tensor Networks for Dimensionality Reduction and Large-scale Optimization: Part 1 Low-Rank Tensor Decompositions , 2016, Found. Trends Mach. Learn..
[2] Paul T. Boggs,et al. Sequential Quadratic Programming , 1995, Acta Numerica.
[3] Alwin Stegeman,et al. Candecomp/Parafac: From Diverging Components to a Decomposition in Block Terms , 2012, SIAM J. Matrix Anal. Appl..
[4] W. Rayens,et al. Two-factor degeneracies and a stabilization of PARAFAC , 1997 .
[5] Andrzej Cichocki,et al. Partitioned Hierarchical alternating least squares algorithm for CP tensor decomposition , 2017, 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
[6] Andrzej Cichocki,et al. A further improvement of a fast damped Gauss-Newton algorithm for candecomp-parafac tensor decomposition , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.
[7] A. Stegeman,et al. On the Non-Existence of Optimal Solutions and the Occurrence of “Degeneracy” in the CANDECOMP/PARAFAC Model , 2008, Psychometrika.
[8] P. Paatero. Construction and analysis of degenerate PARAFAC models , 2000 .
[9] Dimitri P. Bertsekas,et al. Nonlinear Programming , 1997 .
[10] Andrzej Cichocki,et al. Fast Alternating LS Algorithms for High Order CANDECOMP/PARAFAC Tensor Factorizations , 2013, IEEE Transactions on Signal Processing.
[11] Ben C. Mitchell,et al. Slowly converging parafac sequences: Swamps and two‐factor degeneracies , 1994 .
[12] Pierre Comon,et al. Nonnegative approximations of nonnegative tensors , 2009, ArXiv.
[13] Andrzej Cichocki,et al. Low Complexity Damped Gauss-Newton Algorithms for CANDECOMP/PARAFAC , 2012, SIAM J. Matrix Anal. Appl..
[14] Tamara G. Kolda,et al. Tensor Decompositions and Applications , 2009, SIAM Rev..
[15] R. A. Harshman,et al. Data preprocessing and the extended PARAFAC model , 1984 .
[16] Andrzej Cichocki,et al. Numerical CP decomposition of some difficult tensors , 2016, J. Comput. Appl. Math..
[17] J. Kruskal,et al. A two-stage procedure incorporating good features of both trilinear and quadrilinear models , 1989 .
[18] P. Comon,et al. Tensor decompositions, alternating least squares and other tales , 2009 .
[19] W. Gander,et al. A constrained eigenvalue problem , 1988 .
[20] Andrzej Cichocki,et al. Partitioned Alternating Least Squares Technique for Canonical Polyadic Tensor Decomposition , 2016, IEEE Signal Processing Letters.
[21] P. Paatero. A weighted non-negative least squares algorithm for three-way ‘PARAFAC’ factor analysis , 1997 .
[22] Vin de Silva,et al. Tensor rank and the ill-posedness of the best low-rank approximation problem , 2006, math/0607647.