Impact of domain size and statistical errors in simulations of homogeneous decaying turbulence and the Richtmyer-Meshkov instability

Both experiments and computations are naturally constrained by boundary conditions. In fundamental problems such as homogeneous decaying turbulence (HDT) or shock-induced mixing layers, a size constraint naturally limits the growth of the large scales in the problem, modifying the physics observed. This paper explores through Large Eddy Simulation (LES) the integral properties using computations from 1283 to 10243 for HDT and 1283 to 5123 for the Richtmyer-Meshkov instability (RMI). Kinetic energy decay rates in both cases are shown to be relatively insensitive to the domain size until the spectral peak is at the first wave number. The integral length is significantly more sensitive, showing substantial discrepancies once it is greater than 10% of the domain size. However, the key error is shown to be due to a lack of statistical averaging once the integral length is greater than 5% of the box size, thus appearing earlier than the length scale saturation. This highlights that a single computation at modes...

[1]  R. J. R. Williams,et al.  An improved reconstruction method for compressible flows with low Mach number features , 2008, J. Comput. Phys..

[2]  Ben Thornber,et al.  A Comparison of Three Approaches to Compute the Effective Reynolds Number of the Implicit Large-Eddy Simulations , 2016 .

[3]  Dimonte,et al.  Richtmyer-Meshkov instability in the turbulent regime. , 1995, Physical review letters.

[4]  Pierre Sagaut,et al.  Is isotropic turbulence decay governed by asymptotic behavior of large scales? An eddy-damped quasi-normal Markovian-based data assimilation study , 2014 .

[5]  Oleg Schilling,et al.  HIGH-ORDER WENO SIMULATIONS OF THREE-DIMENSIONAL RESHOCKED RICHTMYER–MESHKOV INSTABILITY TO LATE TIMES:DYNAMICS,DEPENDENCE ON INITIAL CONDITIONS,AND COMPARISONS TO EXPERIMENTAL DATA , 2010 .

[6]  Ben Thornber,et al.  Energy transfer in the Richtmyer-Meshkov instability. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  Ben Thornber,et al.  Numerical dissipation of upwind schemes in low Mach flow , 2008 .

[8]  J. Haas,et al.  Statistical modeling of shock-interface interaction , 1989 .

[9]  P. Woodward,et al.  Inertial range structures in decaying compressible turbulent flows , 1998 .

[10]  J. Jacobs,et al.  Experiments on the Richtmyer–Meshkov instability with an imposed, random initial perturbation , 2008 .

[11]  D. Drikakis,et al.  Large eddy simulation using high-resolution and high-order methods , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[12]  P. Sagaut,et al.  On non-self-similar regimes in homogeneous isotropic turbulence decay , 2012, Journal of Fluid Mechanics.

[13]  S. Pope Turbulent Flows: FUNDAMENTALS , 2000 .

[14]  Kyu Hong Kim,et al.  Accurate, efficient and monotonic numerical methods for multi-dimensional compressible flows Part II: Multi-dimensional limiting process , 2005 .

[15]  L. J. Atherton,et al.  Progress Towards Ignition on the National Ignition Facility , 2013 .

[16]  Nikolaus A. Adams,et al.  Scale separation for implicit large eddy simulation , 2011, J. Comput. Phys..

[17]  G. Ben-Dor,et al.  Investigation of the Richtmyer–Meshkov instability under re-shock conditions , 2008, Journal of Fluid Mechanics.

[18]  J. R. Ristorcelli,et al.  CONSISTENT INITIAL CONDITIONS FOR THE DNS OF COMPRESSIBLE TURBULENCE , 1996 .

[19]  D. Drikakis,et al.  The influence of initial conditions on turbulent mixing due to Richtmyer–Meshkov instability† , 2010, Journal of Fluid Mechanics.

[20]  Marilyn Schneider,et al.  Density ratio dependence of Rayleigh–Taylor mixing for sustained and impulsive acceleration histories , 2000 .

[21]  Dimitris Drikakis,et al.  On the implicit large eddy simulations of homogeneous decaying turbulence , 2007, J. Comput. Phys..

[22]  E. Meshkov Instability of the interface of two gases accelerated by a shock wave , 1969 .

[23]  Ben Thornber,et al.  Numerical simulations of the two-dimensional multimode Richtmyer-Meshkov instability , 2015 .

[24]  Ravi Samtaney,et al.  Direct numerical simulation of decaying compressible turbulence and shocklet statistics , 2001 .

[25]  Peter A. Amendt,et al.  Indirect-Drive Noncryogenic Double-Shell Ignition Targets for the National Ignition Facility: Design and Analysis , 2001 .

[26]  Mitsuo Yokokawa,et al.  Energy dissipation rate and energy spectrum in high resolution direct numerical simulations of turbulence in a periodic box , 2003 .

[27]  E. Toro,et al.  Restoration of the contact surface in the HLL-Riemann solver , 1994 .

[28]  Ben Thornber,et al.  Implicit Large-Eddy Simulation of a Deep Cavity Using High-Resolution Methods , 2008 .

[29]  A. Cook,et al.  Energy transfer in Rayleigh-Taylor instability. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Uri Alon,et al.  Dimensionality dependence of the Rayleigh–Taylor and Richtmyer–Meshkov instability late-time scaling laws , 2001 .

[31]  Dale Pullin,et al.  Large-eddy simulation and multiscale modelling of a Richtmyer–Meshkov instability with reshock , 2006, Journal of Fluid Mechanics.

[32]  Stephen B. Pope,et al.  Direct numerical simulation of a passive scalar with imposed mean gradient in isotropic turbulence , 1996 .

[33]  P. Saffman The large-scale structure of homogeneous turbulence , 1967, Journal of Fluid Mechanics.

[34]  Dimitris Drikakis,et al.  On entropy generation and dissipation of kinetic energy in high-resolution shock-capturing schemes , 2008, J. Comput. Phys..

[35]  Ben Thornber,et al.  Accuracy of high‐order density‐based compressible methods in low Mach vortical flows , 2014 .

[36]  Thomas J. R. Hughes,et al.  The multiscale formulation of large eddy simulation: Decay of homogeneous isotropic turbulence , 2001 .

[37]  Ben Thornber,et al.  An algorithm for LES of premixed compressible flows using the Conditional Moment Closure model , 2011, J. Comput. Phys..

[38]  Yukio Kaneda,et al.  On the decay of isotropic turbulence , 2006, Journal of Fluid Mechanics.

[39]  S. Menon,et al.  Large-eddy simulation of pulsed high-speed subsonic jets in a turbulent crossflow , 2012 .

[40]  W. Cabot Comparison of two- and three-dimensional simulations of miscible Rayleigh-Taylor instability , 2006 .

[41]  Javier Jiménez,et al.  The structure of intense vorticity in isotropic turbulence , 1993, Journal of Fluid Mechanics.

[42]  S. Corrsin,et al.  The use of a contraction to improve the isotropy of grid-generated turbulence , 1966, Journal of Fluid Mechanics.

[43]  D. Youngs,et al.  Three-dimensional numerical simulation of turbulent mixing by Rayleigh-Taylor instability , 1991 .

[44]  T. W. Horst,et al.  Further experimental support for the Kolmogorov refined similarity hypothesis , 1997 .

[45]  D. Youngs,et al.  Numerical simulation of mixing by Rayleigh-Taylor and Richtmyer-Meshkov instabilities , 1994 .

[46]  Z. Warhaft,et al.  On the onset of high-Reynolds-number grid-generated wind tunnel turbulence , 1996, Journal of Fluid Mechanics.

[47]  R. D. Richtmyer Taylor instability in shock acceleration of compressible fluids , 1960 .

[48]  Ben Thornber,et al.  Steady Turbulent Flow Computations Using a Low Mach Fully Compressible Scheme , 2014 .

[49]  F. Grinstein,et al.  The bipolar behavior of the Richtmyer–Meshkov instability , 2011 .

[50]  A. S. Almgren,et al.  Low mach number modeling of type Ia supernovae. I. Hydrodynamics , 2005 .

[51]  D. Drikakis,et al.  A hybrid compressible-incompressible computational fluid dynamics method for richtmyer-meshkov mixing , 2014 .

[52]  P. Sagaut Large Eddy Simulation for Incompressible Flows , 2001 .

[53]  Grégoire Allaire,et al.  A five-equation model for the simulation of interfaces between compressible fluids , 2002 .

[54]  P. Woodward,et al.  Three-dimensional simulation of a Richtmyer-Meshkov instability with a two-scale initial perturbation , 2002 .

[55]  Timothy T. Clark,et al.  A numerical study of the statistics of a two-dimensional Rayleigh–Taylor mixing layer , 2003 .

[56]  C. Meneveau,et al.  Decay of homogeneous, nearly isotropic turbulence behind active fractal grids , 2012 .

[57]  C. Meneveau,et al.  Decaying turbulence in an active-grid-generated flow and comparisons with large-eddy simulation , 2003, Journal of Fluid Mechanics.

[58]  Bradford Sturtevant,et al.  Experiments on the Richtmyer-Meshkov instability of an air/SF6 interface , 1995 .

[59]  L. Skrbek,et al.  On the decay of homogeneous isotropic turbulence , 2000 .

[60]  F. Grinstein,et al.  Simulations of Richtmyer–Meshkov instabilities in planar shock-tube experiments , 2011 .

[61]  N. A. Adams,et al.  On the Richtmyer–Meshkov instability evolving from a deterministic multimode planar interface , 2014, Journal of Fluid Mechanics.

[62]  S. Balasubramanian,et al.  Turbulent mixing in a Richtmyer–Meshkov fluid layer after reshock: velocity and density statistics , 2012, Journal of Fluid Mechanics.

[63]  Steven J. Ruuth,et al.  A New Class of Optimal High-Order Strong-Stability-Preserving Time Discretization Methods , 2002, SIAM J. Numer. Anal..

[64]  Michael Zingale,et al.  Low Mach Number Modeling of Type Ia Supernovae , 2005 .

[65]  Ben Thornber,et al.  Implicit large eddy simulation of ship airwakes , 2010, The Aeronautical Journal (1968).

[66]  D. A. Callahan,et al.  Fuel gain exceeding unity in an inertially confined fusion implosion , 2014, Nature.

[67]  Ben Thornber,et al.  Growth of a Richtmyer-Meshkov turbulent layer after reshock , 2011 .

[68]  E. Bodenschatz,et al.  Decay of turbulence at high reynolds numbers. , 2014, Physical review letters.