Thermal system identification for large temperature variations using fractional Volterra series

Linear fractional differentiation models have proven their efficacy in modeling thermal diffusive phenomena for small temperature variations with constant thermal parameters (thermal diffusivity and conductivity). However for large temperature variations, the thermal parameters are no longer constant but vary along with the temperature itself. Consequently, the thermal system is no longer linear and could be modeled by non linear fractional differentiation models. The extension of Volterra series to fractional systems is first recalled. Fractional orthogonal generating functions are used as kernels. As compared to a previous work, non linear parameters, such as s -poles of the orthogonal functions and commensurate differentiation order, are estimated along with linear coefficient of Volterra series. Then, Volterra series are applied to model an ARMCO iron sample for large temperature variations in simulation with data generated using finite elements method and in a real life experiment using real data.

[1]  J. Battaglia,et al.  Thermal identification using fractional linear models in high temperatures , 2010 .

[2]  Hüseyin Akçay,et al.  Synthesis of Complete Orthonormal Fractional Basis Functions With Prescribed Poles , 2008, IEEE Transactions on Signal Processing.

[3]  P. Serrier Analyse de l’influence des non-linéarités dans l’approche CRONE : application en isolation vibratoire , 2008 .

[4]  Alain Oustaloup,et al.  Synthesis of fractional Laguerre basis for system approximation , 2007, Autom..

[5]  Jean-Luc Battaglia,et al.  Estimation of heat fluxes during high-speed drilling , 2005 .

[6]  Alain Oustaloup,et al.  Fractional Multimodels - Application to Heat Transfer Modeling , 2003 .

[7]  A. Oustaloup,et al.  Fractional state variable filter for system identification by fractional model , 2001, 2001 European Control Conference (ECC).

[8]  Alain Oustaloup,et al.  Non Integer Model from Modal Decomposition for Time Domain System Identification , 2000 .

[9]  J. Heinen,et al.  Simultaneous Reduction and Expansion of Multidimensional Laplace Transform Kernels , 1974 .

[10]  Jerome Spanier,et al.  A general solution of the diffusion equation for semiinfinite geometries , 1972 .

[11]  M. Schetzen Synthesis of a Class of Non-linear Systems† , 1965 .

[12]  H. Akçay,et al.  Thermal modeling and identification of an aluminum rod using fractional calculus , 2009 .

[13]  Hugues Garnier,et al.  An optimal instrumental variable method for continuous-time fractional model identification , 2008 .

[14]  F. Benoît-Marand Modélisation et identification des systèmes non linéaires par réseaux de neurones à temps continu : application à la modélisation des interfaces de diffusion non linéaires , 2007 .

[15]  Auke Jan Ijspeert,et al.  FRACTIONAL MULTI-MODELS OF THE GASTROCNEMIUS FROG MUSCLE , 2006 .

[16]  A. Oustaloup Représentation et identification par modèle non entier , 2005 .

[17]  Delphine Bard,et al.  Compensation des non-linéarités des systèmes haut-parleurs à pavillon , 2005 .

[18]  Jean-Luc Battaglia,et al.  Représentation non entière du transfert de chaleur par diffusion. Utilité pour la caractérisation et le contrôle non destructif thermique , 2004 .

[19]  Alain Oustaloup,et al.  SYSTEM IDENTIFICATION USING FRACTIONAL HAMMERSTEIN MODELS , 2002 .

[20]  Olivier Cois,et al.  Systèmes linéaires non entiers et identification par modèle non entier : application en thermique , 2002 .

[21]  A. Oustaloup La dérivation non entière , 1995 .

[22]  Pierre Grivet,et al.  Analyse des systèmes non linéaires , 1966 .