Optimal estimation of entanglement

Entanglement does not correspond to an observable, and its evaluation always corresponds to an estimation procedure where the amount of entanglement is inferred from the measurements of one or more proper observables. Here we address optimal estimation of entanglement in the framework of local quantum estimation theory and derive the optimal observable in terms of the symmetric logarithmic derivative. We evaluate the quantum Fisher information and, in turn, the ultimate bound to precision for several families of bipartite states for either for qubits or continuous-variable systems and for different measures of entanglement. We found that for discrete variables, entanglement may be efficiently estimated when it is large, whereas estimation of weakly entangled states is an inherently inefficient procedure. For continuous-variable Gaussian systems the effectiveness of entanglement estimation strongly depends on the chosen entanglement measure. Our analysis makes an important point of principle and may be relevant in the design of quantum information protocols based on the entanglement content of quantum states.

[1]  Miguel Navascués,et al.  Pure state estimation and the characterization of entanglement. , 2007, Physical review letters.

[2]  S. Boixo,et al.  Operational interpretation for global multipartite entanglement. , 2007, Physical review letters.

[3]  G. Guo,et al.  Experimental measurement of multidimensional entanglement via equivalent symmetric projection , 2007, 0706.0935.

[4]  P. Marian,et al.  Bures distance as a measure of entanglement for symmetric two-mode Gaussian states , 2007, 0705.1138.

[5]  M. Paris,et al.  Optimal quantum estimation of loss in bosonic channels. , 2007, Physical review letters.

[6]  K. Audenaert,et al.  When are correlations quantum?—verification and quantification of entanglement by simple measurements , 2006, quant-ph/0608067.

[7]  Jens Eisert,et al.  Quantitative entanglement witnesses , 2006, quant-ph/0607167.

[8]  O. Gühne,et al.  Estimating entanglement measures in experiments. , 2006, Physical review letters.

[9]  S. Walborn,et al.  Experimental determination of entanglement with a single measurement , 2006, Nature.

[10]  A. Monras Optimal phase measurements with pure Gaussian states , 2005, quant-ph/0509018.

[11]  Masanao Ozawa,et al.  Ancilla-assisted enhancement of channel estimation for low-noise parameters , 2005, quant-ph/0507055.

[12]  S. Olivares,et al.  Photon subtracted states and enhancement of nonlocality in the presence of noise , 2005, quant-ph/0503104.

[13]  E. Solano,et al.  Instantaneous measurement of field quadrature moments and entanglement , 2005, quant-ph/0501114.

[14]  S. Braunstein,et al.  Quantum Information with Continuous Variables , 2004, quant-ph/0410100.

[15]  Ren De-Ming Entanglement and Quantity in Quantum Space — About Quantum Measurement (II) , 2004 .

[16]  G. Milburn,et al.  Optimal estimation of one-parameter quantum channels , 2004, quant-ph/0406070.

[17]  P. Horodecki Direct estimation of elements of quantum states algebra and entanglement detection via linear contractions , 2003 .

[18]  M. Barbieri,et al.  Detection of entanglement with polarized photons: experimental realization of an entanglement witness. , 2003, Physical review letters.

[19]  F. Illuminati,et al.  Entanglement and purity of two-mode Gaussian states in noisy channels (10 pages) , 2003, quant-ph/0310087.

[20]  Hiroshi Imai,et al.  Quantum parameter estimation of a generalized Pauli channel , 2003 .

[21]  O. Gühne Characterizing entanglement via uncertainty relations. , 2003, Physical review letters.

[22]  H. Hofmann Bound entangled states violate a nonsymmetric local uncertainty relation , 2003, quant-ph/0305003.

[23]  J. Cirac,et al.  Entanglement of formation for symmetric Gaussian states. , 2003, Physical review letters.

[24]  C. Macchiavello,et al.  Local observables for entanglement detection of depolarized states , 2003 .

[25]  H. Hofmann,et al.  Violation of local uncertainty relations as a signature of entanglement , 2002, quant-ph/0212090.

[26]  O. Gühne,et al.  Experimental detection of entanglement via witness operators and local measurements , 2002, quant-ph/0210134.

[27]  A. O. Pittenger,et al.  Geometry of entanglement witnesses and local detection of entanglement , 2002, quant-ph/0207024.

[28]  R. Fazio,et al.  Entanglement detection in Josephson nanocircuits , 2002 .

[29]  Ling-An Wu,et al.  A matrix realignment method for recognizing entanglement , 2002, Quantum Inf. Comput..

[30]  P. Horodecki,et al.  Method for direct detection of quantum entanglement. , 2001, Physical review letters.

[31]  Akio Fujiwara,et al.  Quantum channel identification problem , 2001 .

[32]  G. Vidal,et al.  Computable measure of entanglement , 2001, quant-ph/0102117.

[33]  J. Cirac,et al.  Multiparticle entanglement and its experimental detection , 2000, quant-ph/0011025.

[34]  G. Vidal,et al.  Optimal estimation of two-qubit pure-state entanglement , 1999, quant-ph/9911008.

[35]  J. M. Sancho,et al.  Measuring the entanglement of bipartite pure states , 1999, quant-ph/9910041.

[36]  Simón Peres-horodecki separability criterion for continuous variable systems , 1999, Physical review letters.

[37]  J. Cirac,et al.  Inseparability criterion for continuous variable systems , 1999, Physical review letters.

[38]  Dorje C. Brody,et al.  Geometrization of statistical mechanics , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[39]  D. Brody,et al.  Statistical geometry in quantum mechanics , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[40]  Pérès,et al.  Collective tests for quantum nonlocality. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[41]  G. Milburn,et al.  Generalized uncertainty relations: Theory, examples, and Lorentz invariance , 1995, quant-ph/9507004.

[42]  S. Braunstein,et al.  Statistical distance and the geometry of quantum states. , 1994, Physical review letters.

[43]  S. Olivares,et al.  Gaussian States in Quantum Information , 2005 .

[44]  C. Helstrom Quantum detection and estimation theory , 1969 .