Joint retrievals of cloud and drizzle in marine boundary layer clouds using ground-based radar, lidar and zenith radiances

Abstract. Active remote sensing of marine boundary-layer clouds is challenging as drizzle drops often dominate the observed radar reflectivity. We present a new method to simultaneously retrieve cloud and drizzle vertical profiles in drizzling boundary-layer clouds using surface-based observations of radar reflectivity, lidar attenuated backscatter, and zenith radiances under conditions when precipitation does not reach the surface. Specifically, the vertical structure of droplet size and water content of both cloud and drizzle is characterised throughout the cloud. An ensemble optimal estimation approach provides full error statistics given the uncertainty in the observations. To evaluate the new method, we first perform retrievals using synthetic measurements from large-eddy simulation snapshots of cumulus under stratocumulus, where cloud water path is retrieved with an error of 31 g m−2. The method also performs well in non-drizzling clouds where no assumption of the cloud profile is required. We then apply the method to observations of marine stratocumulus obtained during the Atmospheric Radiation Measurement MAGIC deployment in the Northeast Pacific. Here, retrieved cloud water path agrees well with independent three-channel microwave radiometer retrievals, with a root mean square difference of 10–20 g m−2.

[1]  M. Fujiwara,et al.  The Size Distribution of Cloud Droplets Measured in Small Maritime Cumulus Clouds , 1980 .

[2]  R. Wood Rate of loss of cloud droplets by coalescence in warm clouds , 2006 .

[3]  N. C. Strugnell,et al.  First operational BRDF, albedo nadir reflectance products from MODIS , 2002 .

[4]  Graham Feingold,et al.  A novel ensemble method for retrieving properties of warm cloud in 3‐D using ground‐based scanning radar and zenith radiances , 2014 .

[5]  Pavlos Kollias,et al.  Separating Cloud and Drizzle Radar Moments during Precipitation Onset Using Doppler Spectra , 2013 .

[6]  B. Cairns,et al.  Adjoint Methods for Adjusting Three-Dimensional Atmosphere and Surface Properties to Fit Multi-Angle Multi-Pixel Polarimetric Measurements , 2014 .

[7]  Pavlos Kollias,et al.  Cloud radar Doppler spectra in drizzling stratiform clouds: 2. Observations and microphysical modeling of drizzle evolution , 2011 .

[8]  C. Fairall,et al.  Measurement of Stratus Cloud and Drizzle Parameters in ASTEX with a K , 1995 .

[9]  B. Stevens,et al.  Observations, experiments, and large eddy simulation , 2001 .

[10]  Robin J. Hogan,et al.  Retrieving Stratocumulus Drizzle Parameters Using Doppler Radar and Lidar , 2005 .

[11]  Hailong Wang,et al.  Precipitation-generated oscillations in open cellular cloud fields , 2010, Nature.

[12]  Richard G. Forbes,et al.  Improving the Representation of Low Clouds and Drizzle in the ECMWF Model Based on ARM Observations from the Azores , 2014 .

[13]  Robin J. Hogan,et al.  Estimating drizzle drop size and precipitation rate using two-colour lidar measurements , 2010 .

[14]  S. Twomey,et al.  The nuclei of natural cloud formation part II: The supersaturation in natural clouds and the variation of cloud droplet concentration , 1959 .

[15]  Sergey Y. Matrosov,et al.  Evaluation of Radar Reflectivity-Based Estimates of Water Content in Stratiform Marine Clouds , 2004 .

[16]  Nicolas Gaussiat,et al.  Stratocumulus Liquid Water Content from Dual-Wavelength Radar , 1999 .

[17]  Karen L. Johnson,et al.  Ka-Band ARM Zenith Radar (KAZR) Instrument Handbook , 2012 .

[18]  Takashi Nakajima,et al.  Droplet Growth in Warm Water Clouds Observed by the A-Train. Part I: Sensitivity Analysis of the MODIS-Derived Cloud Droplet Sizes , 2010 .

[19]  R. Wood,et al.  Drizzle in Stratiform Boundary Layer Clouds. Part I: Vertical and Horizontal Structure , 2005 .

[20]  M. Miller,et al.  Threshold radar reflectivity for drizzling clouds , 2008 .

[21]  Kuan Xu,et al.  A PDF-Based Microphysics Parameterization for Simulation of Drizzling Boundary Layer Clouds , 2009 .

[22]  E. Eloranta Practical model for the calculation of multiply scattered lidar returns. , 1993, Applied optics.

[23]  Melanie A. Wetzel,et al.  Evaluation of the aerosol indirect effect in marine stratocumulus clouds : droplet number, size, liquid water path, and radiative impact , 2005 .

[24]  Steven Platnick,et al.  Effects of Cloud Horizontal Inhomogeneity and Drizzle on Remote Sensing of Cloud Droplet Effective Radius: Case Studies Based on Large-eddy Simulations , 2012 .

[25]  Robert Wood Parametrization of the effect of drizzle upon the droplet effective radius in stratocumulus clouds , 2000 .

[26]  R. Wood,et al.  Spatial variability of liquid water path in marine low cloud : The importance of mesoscale cellular convection , 2006 .

[27]  S. Nicholls The dynamics of stratocumulus: Aircraft observations and comparisons with a mixed layer model , 1984 .

[28]  K. Beard Terminal Velocity and Shape of Cloud and Precipitation Drops Aloft , 1976 .

[29]  Neil I. Fox,et al.  The Retrieval of Stratocumulus Cloud Properties by Ground-Based Cloud Radar , 1997 .

[30]  J. Seinfeld,et al.  Marine stratocumulus aerosol-cloud relationships in the MASE-II experiment: Precipitation susceptibility in eastern Pacific marine stratocumulus , 2009 .

[31]  Bart Geerts,et al.  Identifying drizzle within marine stratus with W-band radar reflectivity , 2003 .

[32]  Pavlos Kollias,et al.  Radar-radiometer retrievals of cloud number concentration and dispersion parameter in nondrizzling marine stratocumulus , 2013 .

[33]  G. Mace,et al.  Profiles of Low-Level Stratus Cloud Microphysics Deduced from Ground-Based Measurements , 2003 .

[34]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[35]  B. Stevens,et al.  Observations of Drizzle in Nocturnal Marine Stratocumulus , 2005 .

[36]  S. Klein,et al.  Are climate model simulations of clouds improving? An evaluation using the ISCCP simulator , 2012 .

[37]  C. Ulbrich Natural Variations in the Analytical Form of the Raindrop Size Distribution , 1983 .

[38]  Zhien Wang,et al.  Climatology of drizzle in marine boundary layer clouds based on 1 year of data from CloudSat and Cloud‐Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) , 2008 .

[39]  A. Stuart,et al.  Ensemble Kalman methods for inverse problems , 2012, 1209.2736.

[40]  E. Kassianov,et al.  Aerosol indirect effects in a multi-scale aerosol-climate model PNNL-MMF , 2011 .

[41]  M. Lebsock,et al.  Microphysical implications of cloud‐precipitation covariance derived from satellite remote sensing , 2013 .

[42]  E. O'connor,et al.  A Technique for Autocalibration of Cloud Lidar , 2004 .

[43]  João Paulo Ramos Teixeira,et al.  Tropical and Subtropical Cloud Transitions in Weather and Climate Prediction Models: The GCSS/WGNE Pacific Cross-Section Intercomparison (GPCI) , 2011 .

[44]  M. Kirkpatrick,et al.  The impact of humidity above stratiform clouds on indirect aerosol climate forcing , 2004, Nature.

[45]  Robin J. Hogan,et al.  Fast Lidar and Radar Multiple-Scattering Models. Part I: Small-Angle Scattering Using the Photon Variance–Covariance Method , 2008 .

[46]  E. O'connor,et al.  Aerosol impacts on drizzle properties in warm clouds from ARM Mobile Facility maritime and continental deployments , 2014 .

[47]  D. P. Donovan,et al.  Cloud effective particle size and water content profile retrievals using combined lidar and radar observations: 1. Theory and examples , 2001 .

[48]  Hanna Pawlowska,et al.  An observational study of drizzle formation in stratocumulus clouds for general circulation model (GCM) parameterizations , 2003 .

[49]  Pavlos Kollias,et al.  Clouds, Precipitation, and Marine Boundary Layer Structure during the MAGIC Field Campaign , 2015 .

[50]  W-band ARM Cloud Radar (WACR) Handbook , 2005 .

[51]  Hans J. Liebe,et al.  An updated model for millimeter wave propagation in moist air , 1985 .

[52]  P. Squires The Growth of Cloud Drops by Condensation. I. General Characteristics , 1952 .

[53]  G. Vali,et al.  Finescale Structure and Microphysics of Coastal Stratus , 1998 .

[54]  Matthias Steiner,et al.  A Microphysical Interpretation of Radar Reflectivity–Rain Rate Relationships , 2004 .

[55]  B. Kahn,et al.  Characterization of cloud liquid water content distributions from CloudSat , 2010 .

[56]  Patrick Minnis,et al.  Clouds, Aerosols, and Precipitation in the Marine Boundary Layer: An Arm Mobile Facility Deployment , 2015 .

[57]  K. Evans The Spherical Harmonics Discrete Ordinate Method for Three-Dimensional Atmospheric Radiative Transfer , 1998 .

[58]  Simone Lolli,et al.  Evaluating Light Rain Drop Size Estimates from Multiwavelength Micropulse Lidar Network Profiling , 2013 .

[59]  W. Cotton,et al.  The Relationship between Drop In-Cloud Residence Time and Drizzle Production in Numerically Simulated Stratocumulus Clouds , 1996 .

[60]  Oleg A. Krasnov,et al.  Continuous Evaluation of Cloud Profiles in Seven Operational Models Using Ground-Based Observations , 2007 .

[61]  William S. Olson,et al.  Precipitating Snow Retrievals from Combined Airborne Cloud Radar and Millimeter-Wave Radiometer Observations , 2008 .

[62]  E. Clothiaux,et al.  Cloud Droplet Size Distributions in Low-Level Stratiform Clouds , 2000 .

[63]  E. O'connor,et al.  The interdependence of continental warm cloud properties derived from unexploited solar background signals in ground-based lidar measurements , 2014 .

[64]  David D. Turner,et al.  The Atmospheric radiation measurement (ARM) program network of microwave radiometers: instrumentation, data, and retrievals , 2013 .

[65]  B. Stevens,et al.  Aerosol effects on clouds, precipitation, and the organization of shallow cumulus convection , 2008 .

[66]  Paquita Zuidema,et al.  Assessment of MODIS cloud effective radius and optical thickness retrievals over the Southeast Pacific with VOCALS‐REx in situ measurements , 2011 .

[67]  Philip J. Rasch,et al.  The roles of cloud drop effective radius and LWP in determining rain properties in marine stratocumulus , 2012 .

[68]  C. Bretherton,et al.  Reflectivity and rain rate in and below drizzling stratocumulus , 2004 .

[69]  M. Christensen,et al.  Exposing biases in retrieved low cloud properties from CloudSat: A guide for evaluating observations and climate data , 2013 .

[70]  E. O'connor,et al.  The CloudSat mission and the A-train: a new dimension of space-based observations of clouds and precipitation , 2002 .

[71]  Y. Knyazikhin,et al.  Cloud droplet size and liquid water path retrievals from zenith radiance measurements: examples from the Atmospheric Radiation Measurement Program and the Aerosol Robotic Network , 2012 .

[72]  I. Boutle,et al.  Spatial variability of liquid cloud and rain: observations and microphysical effects , 2014 .

[73]  Taneil Uttal,et al.  On cloud radar and microwave radiometer measurements of stratus cloud liquid water profiles , 1998 .

[74]  J. Golaz,et al.  Aerosol effects on stratocumulus water paths in a PDF‐based parameterization , 2011 .

[75]  Andrew M. Stuart,et al.  Analysis of the Ensemble Kalman Filter for Inverse Problems , 2016, SIAM J. Numer. Anal..

[76]  H. V. Hulst Light Scattering by Small Particles , 1957 .

[77]  M. W. Reeks,et al.  Droplet growth in warm turbulent clouds , 2012 .

[78]  T. Zinner,et al.  Testing remote sensing on artificial observations: impact of drizzle and 3-D cloud structure on effective radius retrievals , 2010 .

[79]  J. Seinfeld,et al.  Observations of marine stratocumulus microphysics and implications for processes controlling droplet spectra: Results from the Marine Stratus/Stratocumulus Experiment , 2009 .

[80]  James D. Spinhirne,et al.  An Automated Algorithm for Detection of Hydrometeor Returns in Micropulse Lidar Data , 1998 .

[81]  David M. Winker,et al.  The Experimental Cloud Lidar Pilot Study (ECLIPS) for cloud-radiation research , 1994 .

[82]  H. Gerber,et al.  Microphysics of Marine Stratocumulus Clouds with Two Drizzle Modes , 1996 .

[83]  K. Bower,et al.  Evaluating MODIS cloud retrievals with in situ observations from VOCALS-REx , 2012 .

[84]  R. Hogan,et al.  Fast approximate calculation of multiply scattered lidar returns. , 2006, Applied optics.

[85]  J. Quaas,et al.  Incorporating the subgrid‐scale variability of clouds in the autoconversion parameterization using a PDF‐scheme , 2012 .