Coherent control of an ultrabright single spin in hexagonal boron nitride at room temperature

[1]  Kejun Li,et al.  Carbon trimer as a 2 eV single-photon emitter candidate in hexagonal boron nitride: A first-principles study , 2022, Physical Review Materials.

[2]  Á. Gali,et al.  Ultraviolet Quantum Emitters in Hexagonal Boron Nitride from Carbon Clusters , 2022, The journal of physical chemistry letters.

[3]  Hongbing Cai,et al.  Excited-State Optically Detected Magnetic Resonance of Spin Defects in Hexagonal Boron Nitride. , 2021, Physical review letters.

[4]  Han Liu,et al.  Excited-State Spectroscopy of Spin Defects in Hexagonal Boron Nitride. , 2021, Nano letters.

[5]  A. Ramsay,et al.  Excited State Spectroscopy of Boron Vacancy Defects in Hexagonal Boron Nitride Using Time-Resolved Optically Detected Magnetic Resonance. , 2021, Nano letters.

[6]  A. N. Vamivakas,et al.  Excited-state spin-resonance spectroscopy of V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{{{{{{{{\rm{B}}}}}}}} , 2021, Nature communications.

[7]  A. Alkauskas,et al.  Thermodynamics of carbon point defects in hexagonal boron nitride , 2021, Physical Review Materials.

[8]  T. T. Tran,et al.  Solvent-Exfoliated Hexagonal Boron Nitride Nanoflakes for Quantum Emitters , 2021, ACS Applied Nano Materials.

[9]  J. Tetienne Quantum sensors go flat , 2021, Nature Physics.

[10]  Johannes E. Fröch,et al.  Coupling Spin Defects in a Layered Material to Nanoscale Plasmonic Cavities , 2021, Advanced materials.

[11]  I. Aharonovich,et al.  Spin defects in hBN as promising temperature, pressure and magnetic field quantum sensors , 2021, Nature Communications.

[12]  Á. Gali,et al.  Towards ab initio identification of paramagnetic substitutional carbon defects in hexagonal boron nitride acting as quantum bits , 2021, Physical Review B.

[13]  R. Schmidt,et al.  Assembly of large hBN nanocrystal arrays for quantum light emission , 2021 .

[14]  P. Upadhyaya,et al.  High-Contrast Plasmonic-Enhanced Shallow Spin Defects in Hexagonal Boron Nitride for Quantum Sensing. , 2021, Nano letters.

[15]  Johannes E. Fröch,et al.  Coupling Spin Defects in Hexagonal Boron Nitride to Monolithic Bullseye Cavities. , 2021, Nano letters.

[16]  Chuan-Feng Li,et al.  Generation of Spin Defects by Ion Implantation in Hexagonal Boron Nitride , 2021, ACS omega.

[17]  A. N. Smirnov,et al.  Creation of Negatively Charged Boron Vacancies in Hexagonal Boron Nitride Crystal by Electron Irradiation and Mechanism of Inhomogeneous Broadening of Boron Vacancy-Related Spin Resonance Lines , 2021, Nanomaterials.

[18]  F. J. Heremans,et al.  Quantum guidelines for solid-state spin defects , 2021, Nature Reviews Materials.

[19]  H. Sirringhaus,et al.  Room-temperature optically detected magnetic resonance of single defects in hexagonal boron nitride , 2021, Nature Communications.

[20]  I. Aharonovich,et al.  Sub-nanoscale Temperature, Magnetic Field and Pressure sensing with Spin Centers in 2D hexagonal Boron Nitride , 2021, 2102.10890.

[21]  Chuan-Feng Li,et al.  Coherent dynamics of multi-spin V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{{{{{{{{\rm{B}}}}}}}}}^{-}$$\end{d , 2021, Nature Communications.

[22]  Chuan-Feng Li,et al.  Temperature-Dependent Energy-Level Shifts of Spin Defects in Hexagonal Boron Nitride , 2021, ACS Photonics.

[23]  Xingyu Gao,et al.  Femtosecond Laser Writing of Spin Defects in Hexagonal Boron Nitride , 2020, 2012.03207.

[24]  I. Aharonovich,et al.  Room temperature coherent control of spin defects in hexagonal boron nitride , 2020, Science Advances.

[25]  Y. Ping,et al.  Intersystem crossing and exciton–defect coupling of spin defects in hexagonal boron nitride , 2020, npj Computational Materials.

[26]  J. E. Castellanos-Águila,et al.  First-Principles Identification of Single Photon Emitters Based on Carbon Clusters in Hexagonal Boron Nitride. , 2020, The journal of physical chemistry. A.

[27]  Johannes E. Fröch,et al.  Generation of Spin Defects in Hexagonal Boron Nitride , 2020 .

[28]  Jun Shen,et al.  Photoluminescence, photophysics, and photochemistry of the VB− defect in hexagonal boron nitride , 2020, 2006.16474.

[29]  Á. Gali,et al.  Ab initio theory of the negatively charged boron vacancy qubit in hexagonal boron nitride , 2020, npj Computational Materials.

[30]  J. Reimers,et al.  Identifying carbon as the source of visible single-photon emission from hexagonal boron nitride , 2020, Nature Materials.

[31]  B. Gil,et al.  Photonics with hexagonal boron nitride , 2019, Nature Reviews Materials.

[32]  J. Wrachtrup,et al.  Single-spin resonance in a van der Waals embedded paramagnetic defect , 2019, Nature Materials.

[33]  G. Guo,et al.  An ultrastable and robust single-photon emitter in hexagonal boron nitride , 2019, Physica E: Low-dimensional Systems and Nanostructures.

[34]  Ronald Hanson,et al.  Quantum technologies with optically interfaced solid-state spins , 2018, Nature Photonics.

[35]  Sydney,et al.  Electron paramagnetic resonance signature of point defects in neutron-irradiated hexagonal boron nitride , 2018, Physical Review B.

[36]  L. Weston,et al.  Native point defects and impurities in hexagonal boron nitride , 2018, Physical Review B.

[37]  Dirk Englund,et al.  Material platforms for spin-based photonic quantum technologies , 2018, Nature Reviews Materials.

[38]  Y. Bando,et al.  Tuning of the Optical, Electronic, and Magnetic Properties of Boron Nitride Nanosheets with Oxygen Doping and Functionalization , 2017, Advanced materials.

[39]  B. Johnson,et al.  A review on single photon sources in silicon carbide , 2017, Reports on progress in physics. Physical Society.

[40]  D. Englund,et al.  Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride , 2016, Nature Communications.

[41]  D. Englund,et al.  Solid-state single-photon emitters , 2016, Nature Photonics.

[42]  X. Duan,et al.  Van der Waals heterostructures and devices , 2016 .

[43]  O. Stéphan,et al.  Bright UV Single Photon Emission at Point Defects in h-BN. , 2016, Nano letters.

[44]  M. Spencer,et al.  Temperature Dependence of Wavelength Selectable Zero-Phonon Emission from Single Defects in Hexagonal Boron Nitride. , 2016, Nano letters.

[45]  Igor Aharonovich,et al.  Robust multicolor single photon emission from point defects in hexagonal boron nitride , 2016, 2017 Conference on Lasers and Electro-Optics (CLEO).

[46]  P. Valvin,et al.  Hexagonal boron nitride is an indirect bandgap semiconductor , 2015, Nature Photonics.

[47]  Igor Aharonovich,et al.  Quantum emission from hexagonal boron nitride monolayers , 2015, 2016 Conference on Lasers and Electro-Optics (CLEO).

[48]  I. Gerhardt,et al.  Coherent control of single spins in silicon carbide at room temperature. , 2014, Nature materials.

[49]  D. Awschalom,et al.  First-principles theory of the luminescence lineshape for the triplet transition in diamond NV centres , 2014, 1405.7313.

[50]  R. Schirhagl,et al.  Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology. , 2014, Annual review of physical chemistry.

[51]  Neil B. Manson,et al.  The nitrogen-vacancy colour centre in diamond , 2013, 1302.3288.

[52]  M. Markham,et al.  Heralded entanglement between solid-state qubits separated by three metres , 2012, Nature.

[53]  A. Krasheninnikov,et al.  Mechanisms of postsynthesis doping of boron nitride nanostructures with carbon from first-principles simulations. , 2011, Physical review letters.

[54]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[55]  E. Kaxiras,et al.  Theory of spin-conserving excitation of the N-V(-) center in diamond. , 2009, Physical review letters.

[56]  Heinz Schmid,et al.  Controlled particle placement through convective and capillary assembly. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[57]  T. Voorhis,et al.  Direct optimization method to study constrained systems within density-functional theory , 2005 .

[58]  Mikael T. Björk,et al.  Integration of Colloidal Nanocrystals into Lithographically Patterned Devices , 2004 .

[59]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[60]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[61]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[62]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[63]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[64]  P. Blöchl Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[65]  Chuan-Feng Li,et al.  Rabi oscillation of VB spin in hexagonal boron nitride , 2021 .

[66]  Igor Aharonovich,et al.  Room Temperature Initialisation and Readout of Intrinsic Spin Defects in a Van der Waals Crystal , 2019 .

[67]  Arthur Schweiger,et al.  EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. , 2006, Journal of magnetic resonance.